Skip to main content

Python access to structure stock market information

Project description

invest

Python access to structure stock market information

To install: pip install invest

Quick Start

from invest import Tickers

Get a default list of tickers

tickers = Tickers()

tickers is a dict-like container of tickers. So you can do dict-like things with it, like...

  • ask for it's length
len(tickers)
4039
  • list the keys
list(tickers)[:5]
['EGLE', 'KMPH', 'LONG', 'CYBR', 'PTC']
  • check for containment of a key
'GOOG' in tickers
True

The values of this dict-like object are Ticker instances.

ticker = tickers['GOOG']
ticker
Ticker('GOOG')

This ticker object is also dict-like. Let's see how many keys there are:

len(ticker)
40

What are these keys?

list(ticker)
['balancesheet',
 'dividends',
 'get_sustainability',
 'get_info',
 'get_institutional_holders',
 'sustainability',
 'quarterly_balance_sheet',
 'get_balance_sheet',
 'info',
 'quarterly_earnings',
 'isin',
 'earnings',
 'history',
 'get_balancesheet',
 'get_financials',
 'balance_sheet',
 'get_earnings',
 'options',
 'splits',
 'get_recommendations',
 'get_major_holders',
 'get_dividends',
 'actions',
 'recommendations',
 'cashflow',
 'get_cashflow',
 'get_splits',
 'major_holders',
 'institutional_holders',
 'option_chain',
 'get_actions',
 'quarterly_financials',
 'get_calendar',
 'quarterly_cashflow',
 'calendar',
 'financials',
 'quarterly_balancesheet',
 'get_mutualfund_holders',
 'get_isin',
 'mutualfund_holders']

Let's look at one of these, 'info', which contains a dict with a bunch of information about the ticker...

info = ticker['info']
print(*info, sep=', ')
zip, sector, fullTimeEmployees, longBusinessSummary, city, phone, state, country, companyOfficers, website, maxAge, address1, industry, previousClose, regularMarketOpen, twoHundredDayAverage, trailingAnnualDividendYield, payoutRatio, volume24Hr, regularMarketDayHigh, navPrice, averageDailyVolume10Day, totalAssets, regularMarketPreviousClose, fiftyDayAverage, trailingAnnualDividendRate, open, toCurrency, averageVolume10days, expireDate, yield, algorithm, dividendRate, exDividendDate, beta, circulatingSupply, startDate, regularMarketDayLow, priceHint, currency, trailingPE, regularMarketVolume, lastMarket, maxSupply, openInterest, marketCap, volumeAllCurrencies, strikePrice, averageVolume, priceToSalesTrailing12Months, dayLow, ask, ytdReturn, askSize, volume, fiftyTwoWeekHigh, forwardPE, fromCurrency, fiveYearAvgDividendYield, fiftyTwoWeekLow, bid, tradeable, dividendYield, bidSize, dayHigh, exchange, shortName, longName, exchangeTimezoneName, exchangeTimezoneShortName, isEsgPopulated, gmtOffSetMilliseconds, quoteType, symbol, messageBoardId, market, annualHoldingsTurnover, enterpriseToRevenue, beta3Year, profitMargins, enterpriseToEbitda, 52WeekChange, morningStarRiskRating, forwardEps, revenueQuarterlyGrowth, sharesOutstanding, fundInceptionDate, annualReportExpenseRatio, bookValue, sharesShort, sharesPercentSharesOut, fundFamily, lastFiscalYearEnd, heldPercentInstitutions, netIncomeToCommon, trailingEps, lastDividendValue, SandP52WeekChange, priceToBook, heldPercentInsiders, nextFiscalYearEnd, mostRecentQuarter, shortRatio, sharesShortPreviousMonthDate, floatShares, enterpriseValue, threeYearAverageReturn, lastSplitDate, lastSplitFactor, legalType, lastDividendDate, morningStarOverallRating, earningsQuarterlyGrowth, dateShortInterest, pegRatio, lastCapGain, shortPercentOfFloat, sharesShortPriorMonth, category, fiveYearAverageReturn, regularMarketPrice, logo_url
info['shortName']
'Alphabet Inc.'
info['sector']
'Communication Services'
df = ticker['history']
df
Open High Low Close Volume Dividends Stock Splits
Date
2020-10-28 1559.739990 1561.349976 1514.619995 1516.619995 1834000 0 0
2020-10-29 1522.359985 1593.709961 1522.239990 1567.239990 2003100 0 0
2020-10-30 1672.109985 1687.000000 1604.459961 1621.010010 4329100 0 0
2020-11-02 1628.160034 1660.770020 1616.030029 1626.030029 2535400 0 0
2020-11-03 1631.780029 1661.699951 1616.619995 1650.209961 1661700 0 0
2020-11-04 1710.280029 1771.364990 1706.030029 1749.130005 3570900 0 0
2020-11-05 1781.000000 1793.640015 1750.510010 1763.369995 2065800 0 0
2020-11-06 1753.949951 1772.430054 1740.349976 1761.750000 1660900 0 0
2020-11-09 1790.900024 1818.060059 1760.020020 1763.000000 2268300 0 0
2020-11-10 1731.089966 1763.000000 1717.300049 1740.390015 2636100 0 0
2020-11-11 1750.000000 1764.219971 1747.364990 1752.709961 1264000 0 0
2020-11-12 1747.630005 1768.270020 1745.599976 1749.839966 1247500 0 0
2020-11-13 1757.630005 1781.040039 1744.550049 1777.020020 1499900 0 0
2020-11-16 1771.699951 1799.069946 1767.689941 1781.380005 1246800 0 0
2020-11-17 1776.939941 1785.000000 1767.000000 1770.150024 1147100 0 0
2020-11-18 1765.229980 1773.469971 1746.140015 1746.780029 1173500 0 0
2020-11-19 1738.380005 1769.589966 1737.005005 1763.920044 1249900 0 0
2020-11-20 1765.209961 1774.000000 1741.859985 1742.189941 2313500 0 0
2020-11-23 1749.599976 1753.900024 1717.719971 1734.859985 2161600 0 0
2020-11-24 1730.500000 1771.599976 1727.689941 1768.880005 1578000 0 0
2020-11-25 1772.890015 1778.540039 1756.540039 1771.430054 1045800 0 0
2020-11-27 1773.089966 1804.000000 1772.439941 1793.189941 884900 0 0
from mplfinance import plot as candlestick_plot  # pip install mplfinance if you don't have it already

candlestick_plot(df)

png

But these are daily metrics and only for the recent (yes, I'm doing this on a Thanksgiving week-end!) past.

How do I get something different? Like a longer history, and/or at a finer time-granularity?

See the next Configuring Ticker objects section on how to do that.

ticker_symbols argument

The first argument of Tickers is the ticker_symbols argument.

One can specify a collection (list, set, tuple, etc.) of ticker symbol strings, or a path to a file containing a pickle of such a collection.

The default is the string 'local_list' which has the effect of using a default list (currently of about 4000 tickers), but it's contents can change in the future.

Note that this ticker_symbols will have an effect on such affairs as list(tickers), len(tickers), or s in tickers, when it's relevant to use these.

But any Tickers object will allow access to any ticker symbol, regardless if it's in the ticker_symbols collection or not.

tickers = Tickers(ticker_symbols=('GOOG', 'AAPL', 'AMZN'))
assert list(tickers) == ['GOOG', 'AAPL', 'AMZN']
assert len(tickers) == 3
assert 'AAPL' in tickers
assert 'NFLX' not in tickers
# and yet we have access to NFLX info
assert tickers['NFLX']['info']['shortName'] == 'Netflix, Inc.'

Notes

  • Both Tickers and Ticker instances have tab-triggered auto-suggestion enabled when you get an item. Example: tickers['AA<now press the TAB button...>.
  • The specification of

Configuring Ticker objects

Configure a Ticker instance

You can instantiate a Ticker instance directly, from any valid ticker symbol. The Tickers class is just a way to make a collection of tickers to work with.

from invest import Tickers, Ticker

ticker = Ticker('GOOG')
ticker
Ticker('GOOG')

But you'll notice that Ticker (and Tickers) have more than one argument.

from inspect import signature
print(signature(Tickers))
print(signature(Ticker))
(ticker_symbols='local_list', **kwargs_for_method_keys)
(ticker_symbol: str, **kwargs_for_method_keys)

What's this kwargs_for_method_keys?

Well, at the time of writing this, Ticker object is just a convenient dict-like interface to the attributes of the Ticker of the yfinance package which is itself a convenient python interface to the yahoo finance API.

When you do list(ticker), you're just getting a list of attributes of yfinance.Ticker: Both properties and methods that don't require any arguments. Though these methods don't require any arguments -- meaning all their arguments have defaults -- you can still specify if you want to use different defaults.

That's where kwargs_for_method_keys comes in. It specifies what arg=val pairs that should be used for particular methods of yfinance.Ticker.

If you want to know more about what you can do with the Ticker object, you might want to check out yfinance's and yahoo finance API's documentation.

For the basics though, invest provides the help_me_with function (as a standalone function or as a method in Tickers and Ticker) for quick access to essentials.

Ticker.help_me_with('history')
history
wraps <function TickerBase.history at 0x11a064940>, whose signature is:
(self, period='1mo', interval='1d', start=None, end=None, prepost=False, actions=True, auto_adjust=True, back_adjust=False, proxy=None, rounding=False, tz=None, **kwargs)

        :Parameters:
            period : str
                Valid periods: 1d,5d,1mo,3mo,6mo,1y,2y,5y,10y,ytd,max
                Either Use period parameter or use start and end
            interval : str
                Valid intervals: 1m,2m,5m,15m,30m,60m,90m,1h,1d,5d,1wk,1mo,3mo
                Intraday data cannot extend last 60 days
            start: str
                Download start date string (YYYY-MM-DD) or _datetime.
                Default is 1900-01-01
            end: str
                Download end date string (YYYY-MM-DD) or _datetime.
                Default is now
            prepost : bool
                Include Pre and Post market data in results?
                Default is False
            auto_adjust: bool
                Adjust all OHLC automatically? Default is True
            back_adjust: bool
                Back-adjusted data to mimic true historical prices
            proxy: str
                Optional. Proxy server URL scheme. Default is None
            rounding: bool
                Round values to 2 decimal places?
                Optional. Default is False = precision suggested by Yahoo!
            tz: str
                Optional timezone locale for dates.
                (default data is returned as non-localized dates)
            **kwargs: dict
                debug: bool
                    Optional. If passed as False, will suppress
                    error message printing to console.

Example

Here's you can get history to give you something different.

Say, get data for the last day, with a granularity of 15 minutes.

ticker = Ticker('GOOG', history=dict(period='1d', interval='15m'))
ticker
Ticker('GOOG', history={'period': '1d', 'interval': '15m'})

Your ticker is almost identical to the previous one we made, or the one we got from Tickers, except for the fact that asking for ticker['history'] is going to give you something different.

df = ticker['history']
df
Open High Low Close Volume Dividends Stock Splits
Datetime
2020-11-27 09:30:00-05:00 1773.089966 1789.890015 1772.439941 1785.000000 119289 0 0
2020-11-27 09:45:00-05:00 1785.380005 1786.979980 1780.229980 1785.089966 50660 0 0
2020-11-27 10:00:00-05:00 1785.489990 1786.989990 1780.959961 1785.800049 50797 0 0
2020-11-27 10:15:00-05:00 1785.319946 1795.925049 1785.319946 1791.589966 72146 0 0
2020-11-27 10:30:00-05:00 1792.060059 1798.999878 1792.060059 1796.699951 48097 0 0
2020-11-27 10:45:00-05:00 1796.800049 1800.199951 1795.060059 1799.959961 56292 0 0
2020-11-27 11:00:00-05:00 1800.359985 1800.449951 1797.130005 1797.660034 41882 0 0
2020-11-27 11:15:00-05:00 1797.819946 1802.599976 1796.949951 1802.579956 60333 0 0
2020-11-27 11:30:00-05:00 1802.579956 1804.000000 1797.550049 1798.185059 45667 0 0
2020-11-27 11:45:00-05:00 1798.099976 1798.603027 1788.000000 1788.739990 47900 0 0
2020-11-27 12:00:00-05:00 1789.000000 1791.599976 1787.329956 1787.500000 36459 0 0
2020-11-27 12:15:00-05:00 1787.347534 1788.530029 1782.574951 1787.952759 46400 0 0
2020-11-27 12:30:00-05:00 1787.260010 1788.920044 1785.640015 1785.640015 45660 0 0
2020-11-27 12:45:00-05:00 1785.829956 1793.420044 1785.219971 1792.520020 97273 0 0
2020-11-27 13:00:00-05:00 1793.189941 1793.189941 1793.189941 1793.189941 46982 0 0
from mplfinance import plot as candlestick_plot  # pip install mplfinance if you don't have it already

candlestick_plt(df)

png

Configure a Tickers instance

Let's say we wanted all ticker instances that Tickers gives us to have their history be over a specific interval of time in the past (say, during the 2020 pandemic), at 5 day intervals...

tickers = Tickers(ticker_symbols={'NFLX', 'AMZN', 'DAL'},  # demoing the fact that we can specify an explicit collection of ticker symbols
                  history=dict(start='2020-03-01', end='2020-10-31', interval='5d'))
list(tickers)
['DAL', 'AMZN', 'NFLX']

See that indeed, all tickers given by tickers are configured according to our wishes.

tickers['NFLX']
Ticker('NFLX', history={'start': '2020-03-01', 'end': '2020-10-31', 'interval': '5d'})
from mplfinance import plot as candlestick_plot  # pip install mplfinance if you don't have it already

candlestick_plot(tickers['NFLX']['history'])

png

candlestick_plot(tickers['AMZN']['history'])

png

So Netflix and Amazon did well.

Delta, less so:

candlestick_plot(tickers['DAL']['history'])

png

Getting (only) specific information about tickers

Tickers and Ticker are convenient if you want to analyze several aspects of a ticker since you can poke around the various keys (e.g. info, history, etc.).

But if a particular analysis only needs one of these, it's more convenient to use TickersWithSpecificInfo, which gives you the same interface as Tickers (in fact, it's a subclass if Tickers), but fixes the key.

Example: Historical data

For example, if you're only interested in the historical data (a.k.a. the 'history' key), you might do this:

from invest import TickersWithSpecificInfo

tickers = TickersWithSpecificInfo(specific_key='history', start='2008-01-01', end='2009-01-01', interval='1mo')  # 2008 historical data, month granularity
tickers
TickersWithSpecificInfo(ticker_symbols=<local_list>, specific_key=history, start=2008-01-01, end=2009-01-01, interval=1mo)
candlestick_plot(tickers['GOOG'])

png

candlestick_plot(tickers['NFLX'])

png

candlestick_plot(tickers['AMZN'])

png

candlestick_plot(tickers['AAPL'])

png

Example: Specific 'info' fields

from invest import TickersWithSpecificInfo

the_info_that_i_want = ['shortName', 'sector', 'earningsQuarterlyGrowth', 'sharesShortPriorMonth']
tickers = TickersWithSpecificInfo(specific_key='info', val_trans=lambda d: {k: d[k] for k in the_info_that_i_want}) 
tickers
TickersWithSpecificInfo(ticker_symbols=<local_list>, specific_key=info, val_trans=<function <lambda> at 0x11c2374c0>)

Now, you won't get the overwhelming amount of information you usually get with info:

tickers['AAPL']
{'shortName': 'Apple Inc.',
 'sector': 'Technology',
 'earningsQuarterlyGrowth': -0.074,
 'sharesShortPriorMonth': 83252522}
faang_tickers = ('FB', 'AMZN', 'AAPL', 'NFLX', 'GOOG')
the_info_that_i_want = ['shortName', 'sector', 'earningsQuarterlyGrowth', 'sharesShortPriorMonth']
tickers = TickersWithSpecificInfo(faang_tickers, specific_key='info', val_trans=lambda d: {k: d[k] for k in the_info_that_i_want}) 
tickers
TickersWithSpecificInfo(ticker_symbols=('FB', 'AMZN', 'AAPL', 'NFLX', 'GOOG'), specific_key=info, val_trans=<function <lambda> at 0x11c237a60>)
info_df = pd.DataFrame(list(tickers.values()))
info_df
shortName sector earningsQuarterlyGrowth sharesShortPriorMonth
0 Facebook, Inc. Communication Services 0.288 21187652
1 Amazon.com, Inc. Consumer Cyclical 1.967 2509939
2 Apple Inc. Technology -0.074 83252522
3 Netflix, Inc. Communication Services 0.187 9416477
4 Alphabet Inc. Communication Services 0.591 2381334

BulkHistory

from invest import BulkHistory

tickers = BulkHistory(start='2019-01-01', end='2020-01-01', interval='1mo')  # 2019 historical data, month granularity
tickers
BulkHistory(ticker_symbols=['FB', 'AMZN', 'AAPL', 'NFLX', 'GOOG'], history={'start': '2019-01-01', 'end': '2020-01-01', 'interval': '1mo'})
candlestick_plot(tickers['FB'])
[*********************100%***********************]  5 of 5 completed

png

Notice that the data doesn't download again when we ask for GOOG data. That's because the first download bulk downloaded the data for our whole list of ticker symbols.

candlestick_plot(tickers['GOOG'])

png

Notes

    • Though Tickers allows you to deal with a collection of tickers, it does so (for time being) by calling yahoo's API for each individual ticker. The API does, on the other hand, contain some bulk tickers routes which we intend to integrate. For historical data (history), we have BulkHistory that uses the bulk API (through yfinance.Tickers), but for other information (such at the info key), we don't (yet).

All information

Some utils to get all data on a single ticker.

from invest import Ticker
from invest import all_info, all_info_printable_string

ticker = Ticker('GOOG')
d = dict(all_info(ticker))  # all_info is a generator of (key, val) pairs (only for non-empty values), so can use dict to accumulate
list(d)  # list of keys (data names) we have data (values) for, for the given ticker
['financials',
 'quarterly_balance_sheet',
 'institutional_holders',
 'major_holders',
 'history',
 'quarterly_earnings',
 'info',
 'mutualfund_holders',
 'calendar',
 'option_chain',
 'quarterly_cashflow',
 'recommendations',
 'cashflow',
 'options',
 'balance_sheet',
 'quarterly_financials',
 'isin',
 'earnings']
print(f"The following data is for ticker: {ticker.ticker_symbol}\n\n")
print(all_info_printable_string(ticker))
The following data is for ticker: GOOG



----------financials-------------
                                         2019-12-31   2018-12-31   2017-12-31  \
Research Development                     2.6018e+10   2.1419e+10   1.6625e+10   
Effect Of Accounting Charges                   None         None         None   
Income Before Tax                        3.9625e+10   3.4913e+10   2.7193e+10   
Minority Interest                              None         None         None   
Net Income                               3.4343e+10   3.0736e+10   1.2662e+10   
Selling General Administrative           2.7461e+10   2.3256e+10   1.9733e+10   
Gross Profit                             8.9961e+10    7.727e+10   6.5272e+10   
Ebit                                     3.6482e+10   3.2595e+10   2.8914e+10   
Operating Income                         3.6482e+10   3.2595e+10   2.8914e+10   
Other Operating Expenses                       None         None         None   
Interest Expense                             -1e+08    -1.14e+08    -1.09e+08   
Extraordinary Items                            None         None         None   
Non Recurring                                  None         None         None   
Other Items                                    None         None         None   
Income Tax Expense                        5.282e+09    4.177e+09   1.4531e+10   
Total Revenue                           1.61857e+11  1.36819e+11  1.10855e+11   
Total Operating Expenses                1.25375e+11  1.04224e+11   8.1941e+10   
Cost Of Revenue                          7.1896e+10   5.9549e+10   4.5583e+10   
Total Other Income Expense Net            3.143e+09    2.318e+09   -1.721e+09   
Discontinued Operations                        None         None         None   
Net Income From Continuing Ops           3.4343e+10   3.0736e+10   1.2662e+10   
Net Income Applicable To Common Shares   3.4343e+10   3.0736e+10   1.2662e+10   

                                        2016-12-31  
Research Development                    1.3948e+10  
Effect Of Accounting Charges                  None  
Income Before Tax                        2.415e+10  
Minority Interest                             None  
Net Income                              1.9478e+10  
Selling General Administrative           1.747e+10  
Gross Profit                            5.5134e+10  
Ebit                                    2.3716e+10  
Operating Income                        2.3716e+10  
Other Operating Expenses                      None  
Interest Expense                         -1.24e+08  
Extraordinary Items                           None  
Non Recurring                                 None  
Other Items                                   None  
Income Tax Expense                       4.672e+09  
Total Revenue                           9.0272e+10  
Total Operating Expenses                6.6556e+10  
Cost Of Revenue                         3.5138e+10  
Total Other Income Expense Net            4.34e+08  
Discontinued Operations                       None  
Net Income From Continuing Ops          1.9478e+10  
Net Income Applicable To Common Shares  1.9478e+10  

----------quarterly_balance_sheet-------------
                                    2020-09-30    2020-06-30    2020-03-31  \
Intangible Assets                 1.520000e+09  1.697000e+09  1.840000e+09   
Total Liab                        8.632300e+10  7.117000e+10  6.974400e+10   
Total Stockholder Equity          2.129200e+11  2.073220e+11  2.036590e+11   
Other Current Liab                2.406800e+10  2.193400e+10  2.187200e+10   
Total Assets                      2.992430e+11  2.784920e+11  2.734030e+11   
Common Stock                      5.730700e+10  5.593700e+10  5.368800e+10   
Other Current Assets              5.425000e+09  5.579000e+09  5.165000e+09   
Retained Earnings                 1.555670e+11  1.516810e+11  1.510680e+11   
Other Liab                        1.323700e+10  1.278500e+10  1.406300e+10   
Good Will                         2.087000e+10  2.082400e+10  2.073400e+10   
Treasury Stock                    4.600000e+07 -2.960000e+08 -1.097000e+09   
Other Assets                      3.799000e+09  3.626000e+09  3.478000e+09   
Cash                              2.012900e+10  1.774200e+10  1.964400e+10   
Total Current Liabilities         4.820000e+10  4.365800e+10  4.018900e+10   
Deferred Long Term Asset Charges  9.720000e+08  8.950000e+08  7.300000e+08   
Short Long Term Debt              9.990000e+08  9.990000e+08           NaN   
Other Stockholder Equity          4.600000e+07 -2.960000e+08 -1.097000e+09   
Property Plant Equipment          9.358200e+10  9.031500e+10  8.796600e+10   
Total Current Assets              1.643690e+11  1.490690e+11  1.470180e+11   
Long Term Investments             1.510300e+10  1.296100e+10  1.236700e+10   
Net Tangible Assets               1.905300e+11  1.848010e+11  1.810850e+11   
Short Term Investments            1.124670e+11  1.033380e+11  9.758500e+10   
Net Receivables                   2.551300e+10  2.159500e+10  2.373500e+10   
Long Term Debt                    1.282800e+10  2.963000e+09  3.960000e+09   
Inventory                         8.350000e+08  8.150000e+08  8.890000e+08   
Accounts Payable                  4.391000e+09  4.064000e+09  4.099000e+09   

                                    2019-12-31  
Intangible Assets                 1.979000e+09  
Total Liab                        7.446700e+10  
Total Stockholder Equity          2.014420e+11  
Other Current Liab                2.215900e+10  
Total Assets                      2.759090e+11  
Common Stock                      5.055200e+10  
Other Current Assets              4.412000e+09  
Retained Earnings                 1.521220e+11  
Other Liab                        1.447800e+10  
Good Will                         2.062400e+10  
Treasury Stock                   -1.232000e+09  
Other Assets                      3.063000e+09  
Cash                              1.849800e+10  
Total Current Liabilities         4.522100e+10  
Deferred Long Term Asset Charges  7.210000e+08  
Short Long Term Debt                       NaN  
Other Stockholder Equity         -1.232000e+09  
Property Plant Equipment          8.458700e+10  
Total Current Assets              1.525780e+11  
Long Term Investments             1.307800e+10  
Net Tangible Assets               1.788390e+11  
Short Term Investments            1.011770e+11  
Net Receivables                   2.749200e+10  
Long Term Debt                    3.958000e+09  
Inventory                         9.990000e+08  
Accounts Payable                  5.561000e+09  

----------institutional_holders-------------
                                Holder    Shares Date Reported   % Out  \
0           Vanguard Group, Inc. (The)  22204175    2020-09-29  0.0673   
1                       Blackrock Inc.  20032538    2020-09-29  0.0607   
2        Price (T.Rowe) Associates Inc  13396372    2020-09-29  0.0406   
3             State Street Corporation  11589194    2020-09-29  0.0351   
4                             FMR, LLC   7687258    2020-09-29  0.0233   
5        Geode Capital Management, LLC   4431554    2020-09-29  0.0134   
6      Capital International Investors   4071062    2020-09-29  0.0123   
7           Northern Trust Corporation   3981710    2020-09-29  0.0121   
8              AllianceBernstein, L.P.   3889575    2020-09-29  0.0118   
9  Bank Of New York Mellon Corporation   3519043    2020-09-29  0.0107   

         Value  
0  32631255580  
1  29439817844  
2  19687308291  
3  17031479502  
4  11297194356  
5   6512611758  
6   5982832715  
7   5851521016  
8   5716119420  
9   5171585592  

----------major_holders-------------
        0                                      1
0   5.84%        % of Shares Held by All Insider
1  68.32%       % of Shares Held by Institutions
2  72.56%        % of Float Held by Institutions
3    3396  Number of Institutions Holding Shares

----------history-------------
                   Open         High          Low        Close   Volume  \
Date                                                                      
2020-10-30  1672.109985  1687.000000  1604.459961  1621.010010  4329100   
2020-11-02  1628.160034  1660.770020  1616.030029  1626.030029  2535400   
2020-11-03  1631.780029  1661.699951  1616.619995  1650.209961  1661700   
2020-11-04  1710.280029  1771.364990  1706.030029  1749.130005  3570900   
2020-11-05  1781.000000  1793.640015  1750.510010  1763.369995  2065800   
2020-11-06  1753.949951  1772.430054  1740.349976  1761.750000  1660900   
2020-11-09  1790.900024  1818.060059  1760.020020  1763.000000  2268300   
2020-11-10  1731.089966  1763.000000  1717.300049  1740.390015  2636100   
2020-11-11  1750.000000  1764.219971  1747.364990  1752.709961  1264000   
2020-11-12  1747.630005  1768.270020  1745.599976  1749.839966  1247500   
2020-11-13  1757.630005  1781.040039  1744.550049  1777.020020  1499900   
2020-11-16  1771.699951  1799.069946  1767.689941  1781.380005  1246800   
2020-11-17  1776.939941  1785.000000  1767.000000  1770.150024  1147100   
2020-11-18  1765.229980  1773.469971  1746.140015  1746.780029  1173500   
2020-11-19  1738.380005  1769.589966  1737.005005  1763.920044  1249900   
2020-11-20  1765.209961  1774.000000  1741.859985  1742.189941  2313500   
2020-11-23  1749.599976  1753.900024  1717.719971  1734.859985  2161600   
2020-11-24  1730.500000  1771.599976  1727.689941  1768.880005  1578000   
2020-11-25  1772.890015  1778.540039  1756.540039  1771.430054  1045800   
2020-11-27  1773.089966  1804.000000  1772.439941  1793.189941   884900   
2020-11-30  1781.180054  1788.064941  1755.010010  1765.175049   871053   

            Dividends  Stock Splits  
Date                                 
2020-10-30          0             0  
2020-11-02          0             0  
2020-11-03          0             0  
2020-11-04          0             0  
2020-11-05          0             0  
2020-11-06          0             0  
2020-11-09          0             0  
2020-11-10          0             0  
2020-11-11          0             0  
2020-11-12          0             0  
2020-11-13          0             0  
2020-11-16          0             0  
2020-11-17          0             0  
2020-11-18          0             0  
2020-11-19          0             0  
2020-11-20          0             0  
2020-11-23          0             0  
2020-11-24          0             0  
2020-11-25          0             0  
2020-11-27          0             0  
2020-11-30          0             0  

----------quarterly_earnings-------------
             Revenue     Earnings
Quarter                          
4Q2019   46075000000  10671000000
1Q2020   41159000000   6836000000
2Q2020   38297000000   6959000000
3Q2020   46173000000  11247000000

----------info-------------
{'zip': '94043', 'sector': 'Communication Services', 'fullTimeEmployees': 132121, 'longBusinessSummary': 'Alphabet Inc. provides online advertising services in the United States, Europe, the Middle East, Africa, the Asia-Pacific, Canada, and Latin America. It offers performance and brand advertising services. The company operates through Google and Other Bets segments. The Google segment offers products, such as Ads, Android, Chrome, Google Cloud, Google Maps, Google Play, Hardware, Search, and YouTube, as well as technical infrastructure. It also offers digital content, cloud services, hardware devices, and other miscellaneous products and services. The Other Bets segment includes businesses, including Access, Calico, CapitalG, GV, Verily, Waymo, and X, as well as Internet and television services. The company has an agreement with Sabre Corporation to develop an artificial intelligence-driven technology platform for travel. Alphabet Inc. was founded in 1998 and is headquartered in Mountain View, California.', 'city': 'Mountain View', 'phone': '650-253-0000', 'state': 'CA', 'country': 'United States', 'companyOfficers': [], 'website': 'http://www.abc.xyz', 'maxAge': 1, 'address1': '1600 Amphitheatre Parkway', 'industry': 'Internet Content & Information', 'previousClose': 1793.19, 'regularMarketOpen': 1781.18, 'twoHundredDayAverage': 1534.4911, 'trailingAnnualDividendYield': None, 'payoutRatio': 0, 'volume24Hr': None, 'regularMarketDayHigh': 1788.065, 'navPrice': None, 'averageDailyVolume10Day': 1596760, 'totalAssets': None, 'regularMarketPreviousClose': 1793.19, 'fiftyDayAverage': 1673.1482, 'trailingAnnualDividendRate': None, 'open': 1781.18, 'toCurrency': None, 'averageVolume10days': 1596760, 'expireDate': None, 'yield': None, 'algorithm': None, 'dividendRate': None, 'exDividendDate': None, 'beta': 1.023111, 'circulatingSupply': None, 'startDate': None, 'regularMarketDayLow': 1755.01, 'priceHint': 2, 'currency': 'USD', 'trailingPE': 34.105736, 'regularMarketVolume': 870307, 'lastMarket': None, 'maxSupply': None, 'openInterest': None, 'marketCap': 1191815020544, 'volumeAllCurrencies': None, 'strikePrice': None, 'averageVolume': 1823157, 'priceToSalesTrailing12Months': 6.9411025, 'dayLow': 1755.01, 'ask': 1763.88, 'ytdReturn': None, 'askSize': 1100, 'volume': 870307, 'fiftyTwoWeekHigh': 1818.06, 'forwardPE': 28.793476, 'fromCurrency': None, 'fiveYearAvgDividendYield': None, 'fiftyTwoWeekLow': 1013.536, 'bid': 1762.58, 'tradeable': False, 'dividendYield': None, 'bidSize': 900, 'dayHigh': 1788.065, 'exchange': 'NMS', 'shortName': 'Alphabet Inc.', 'longName': 'Alphabet Inc.', 'exchangeTimezoneName': 'America/New_York', 'exchangeTimezoneShortName': 'EST', 'isEsgPopulated': False, 'gmtOffSetMilliseconds': '-18000000', 'quoteType': 'EQUITY', 'symbol': 'GOOG', 'messageBoardId': 'finmb_29096', 'market': 'us_market', 'annualHoldingsTurnover': None, 'enterpriseToRevenue': 6.452, 'beta3Year': None, 'profitMargins': 0.20798999, 'enterpriseToEbitda': 23.045, '52WeekChange': 0.3901559, 'morningStarRiskRating': None, 'forwardEps': 61.3, 'revenueQuarterlyGrowth': None, 'sharesOutstanding': 329867008, 'fundInceptionDate': None, 'annualReportExpenseRatio': None, 'bookValue': 314.169, 'sharesShort': 2606917, 'sharesPercentSharesOut': 0.0039, 'fundFamily': None, 'lastFiscalYearEnd': 1577750400, 'heldPercentInstitutions': 0.68324995, 'netIncomeToCommon': 35712999424, 'trailingEps': 51.752, 'lastDividendValue': None, 'SandP52WeekChange': 0.16843343, 'priceToBook': 5.6181226, 'heldPercentInsiders': 0.0584, 'nextFiscalYearEnd': 1640908800, 'mostRecentQuarter': 1601424000, 'shortRatio': 1.32, 'sharesShortPreviousMonthDate': 1602720000, 'floatShares': 609554771, 'enterpriseValue': 1107906789376, 'threeYearAverageReturn': None, 'lastSplitDate': 1430092800, 'lastSplitFactor': '10000000:10000000', 'legalType': None, 'lastDividendDate': None, 'morningStarOverallRating': None, 'earningsQuarterlyGrowth': 0.591, 'dateShortInterest': 1605225600, 'pegRatio': 2.09, 'lastCapGain': None, 'shortPercentOfFloat': None, 'sharesShortPriorMonth': 2381334, 'category': None, 'fiveYearAverageReturn': None, 'regularMarketPrice': 1781.18, 'logo_url': 'https://logo.clearbit.com/abc.xyz'}

----------mutualfund_holders-------------
                                              Holder   Shares Date Reported  \
0             Vanguard Total Stock Market Index Fund  8166693    2020-06-29   
1                            Vanguard 500 Index Fund  6100848    2020-06-29   
2                         Growth Fund Of America Inc  3027888    2020-09-29   
3                             SPDR S&P 500 ETF Trust  3008850    2020-10-30   
4        Invesco ETF Tr-Invesco QQQ Tr, Series 1 ETF  2986897    2020-10-30   
5          Price (T.Rowe) Blue Chip Growth Fund Inc.  2867378    2020-06-29   
6                            Fidelity 500 Index Fund  2612122    2020-08-30   
7  Vanguard Institutional Index Fund-Institutiona...  2566970    2020-06-29   
8                         Vanguard Growth Index Fund  2263691    2020-06-29   
9                           iShares Core S&P 500 ETF  2254397    2020-09-29   

    % Out        Value  
0  0.0248  11544518891  
1  0.0185   8624219741  
2  0.0092   4449784204  
3  0.0091   4877375938  
4  0.0091   4841789905  
5  0.0087   4053354214  
6  0.0079   4268677529  
7  0.0078   3628694461  
8  0.0069   3199976234  
9  0.0068   3313061831  

----------calendar-------------
Empty DataFrame
Columns: []
Index: [Earnings Date, Earnings Average, Earnings Low, Earnings High, Revenue Average, Revenue Low, Revenue High]

----------option_chain-------------
Options(calls=Empty DataFrame
Columns: [contractSymbol, lastTradeDate, strike, lastPrice, bid, ask, change, percentChange, volume, openInterest, impliedVolatility, inTheMoney, contractSize, currency]
Index: [], puts=Empty DataFrame
Columns: [contractSymbol, lastTradeDate, strike, lastPrice, bid, ask, change, percentChange, volume, openInterest, impliedVolatility, inTheMoney, contractSize, currency]
Index: [])

----------quarterly_cashflow-------------
                                             2020-09-30    2020-06-30  \
Investments                               -9.372000e+09 -3.011000e+09   
Change To Liabilities                      7.000000e+08  2.570000e+08   
Total Cashflows From Investing Activities -1.519700e+10 -8.448000e+09   
Net Borrowings                             9.802000e+09 -3.500000e+07   
Total Cash From Financing Activities       5.460000e+08 -7.498000e+09   
Change To Operating Activities             3.726000e+09  1.367000e+09   
Net Income                                 1.124700e+10  6.959000e+09   
Change In Cash                             2.387000e+09 -1.902000e+09   
Repurchase Of Stock                       -7.897000e+09 -6.852000e+09   
Effect Of Exchange Rate                    3.500000e+07  5.100000e+07   
Total Cash From Operating Activities       1.700300e+10  1.399300e+10   
Depreciation                               3.478000e+09  3.367000e+09   
Other Cashflows From Investing Activities -4.060000e+08  1.190000e+08   
Change To Account Receivables             -3.601000e+09 -8.000000e+07   
Other Cashflows From Financing Activities -1.359000e+09 -6.110000e+08   
Change To Netincome                        1.522000e+09  1.340000e+09   
Capital Expenditures                      -5.406000e+09 -5.391000e+09   

                                             2020-03-31    2019-12-31  
Investments                                3.936000e+09  3.370000e+09  
Change To Liabilities                     -7.980000e+08  1.000000e+09  
Total Cashflows From Investing Activities -1.847000e+09 -4.703000e+09  
Net Borrowings                            -4.900000e+07 -4.700000e+07  
Total Cash From Financing Activities      -8.186000e+09 -7.326000e+09  
Change To Operating Activities            -4.517000e+09  5.481000e+09  
Net Income                                 6.836000e+09  1.067100e+10  
Change In Cash                             1.146000e+09  2.466000e+09  
Repurchase Of Stock                       -8.496000e+09 -6.098000e+09  
Effect Of Exchange Rate                   -2.720000e+08  6.800000e+07  
Total Cash From Operating Activities       1.145100e+10  1.442700e+10  
Depreciation                               3.108000e+09  3.283000e+09  
Other Cashflows From Investing Activities  4.120000e+08  1.210000e+08  
Change To Account Receivables              2.602000e+09 -4.365000e+09  
Other Cashflows From Financing Activities  3.590000e+08 -1.181000e+09  
Change To Netincome                        4.465000e+09  1.695000e+09  
Capital Expenditures                      -6.005000e+09 -6.052000e+09  

----------recommendations-------------
                                         Firm    To Grade From Grade Action
Date                                                                       
2012-03-14 15:28:00                Oxen Group        Hold              init
2012-03-28 06:29:00                 Citigroup         Buy              main
2012-04-03 08:45:00  Global Equities Research  Overweight              main
2012-04-05 06:34:00             Deutsche Bank         Buy              main
2012-04-09 06:03:00          Pivotal Research         Buy              main
...                                       ...         ...        ...    ...
2020-07-31 11:44:08             Raymond James  Outperform              main
2020-08-25 17:05:53                       UBS         Buy              main
2020-10-30 11:38:47             Raymond James  Outperform              main
2020-10-30 12:38:37             Credit Suisse  Outperform              main
2020-10-30 17:00:50                    Mizuho         Buy              main

[226 rows x 4 columns]

----------cashflow-------------
                                             2019-12-31    2018-12-31  \
Investments                               -4.017000e+09 -1.972000e+09   
Change To Liabilities                      4.650000e+08  1.438000e+09   
Total Cashflows From Investing Activities -2.949100e+10 -2.850400e+10   
Net Borrowings                            -2.680000e+08 -6.100000e+07   
Total Cash From Financing Activities      -2.320900e+10 -1.317900e+10   
Change To Operating Activities             7.822000e+09  7.890000e+09   
Net Income                                 3.434300e+10  3.073600e+10   
Change In Cash                             1.797000e+09  5.986000e+09   
Repurchase Of Stock                       -1.839600e+10 -9.075000e+09   
Effect Of Exchange Rate                   -2.300000e+07 -3.020000e+08   
Total Cash From Operating Activities       5.452000e+10  4.797100e+10   
Depreciation                               1.165100e+10  9.029000e+09   
Other Cashflows From Investing Activities  5.890000e+08  5.890000e+08   
Change To Account Receivables             -4.340000e+09 -2.169000e+09   
Other Cashflows From Financing Activities -4.545000e+09 -4.043000e+09   
Change To Netincome                        7.707000e+09  3.298000e+09   
Capital Expenditures                      -2.354800e+10 -2.513900e+10   

                                             2017-12-31    2016-12-31  
Investments                               -1.944800e+10 -1.822900e+10  
Change To Liabilities                      1.121000e+09  3.330000e+08  
Total Cashflows From Investing Activities -3.140100e+10 -3.116500e+10  
Net Borrowings                            -8.600000e+07 -1.335000e+09  
Total Cash From Financing Activities      -8.298000e+09 -8.332000e+09  
Change To Operating Activities             3.682000e+09  2.420000e+09  
Net Income                                 1.266200e+10  1.947800e+10  
Change In Cash                            -2.203000e+09 -3.631000e+09  
Repurchase Of Stock                       -4.846000e+09 -3.693000e+09  
Effect Of Exchange Rate                    4.050000e+08 -1.700000e+08  
Total Cash From Operating Activities       3.709100e+10  3.603600e+10  
Depreciation                               6.899000e+09  6.100000e+09  
Other Cashflows From Investing Activities  1.419000e+09 -1.978000e+09  
Change To Account Receivables             -3.768000e+09 -2.578000e+09  
Other Cashflows From Financing Activities -3.366000e+09 -3.304000e+09  
Change To Netincome                        8.284000e+09  7.158000e+09  
Capital Expenditures                      -1.318400e+10 -1.021200e+10  

----------options-------------
('2020-12-01', '2020-12-04', '2020-12-11', '2020-12-18', '2020-12-24', '2020-12-31', '2021-01-08', '2021-01-15', '2021-02-19', '2021-03-19', '2021-06-18', '2021-07-16', '2021-08-20', '2021-09-17', '2021-10-15', '2022-01-21', '2022-06-17', '2023-01-20')

----------balance_sheet-------------
                                    2019-12-31    2018-12-31    2017-12-31  \
Intangible Assets                 1.979000e+09  2.220000e+09  2.692000e+09   
Total Liab                        7.446700e+10  5.516400e+10  4.479300e+10   
Total Stockholder Equity          2.014420e+11  1.776280e+11  1.525020e+11   
Other Current Liab                2.215900e+10  1.761200e+10  1.065100e+10   
Total Assets                      2.759090e+11  2.327920e+11  1.972950e+11   
Common Stock                      5.055200e+10  4.504900e+10  4.024700e+10   
Other Current Assets              4.412000e+09  4.236000e+09  2.983000e+09   
Retained Earnings                 1.521220e+11  1.348850e+11  1.132470e+11   
Other Liab                        1.447800e+10  1.653200e+10  1.664100e+10   
Good Will                         2.062400e+10  1.788800e+10  1.674700e+10   
Treasury Stock                   -1.232000e+09 -2.306000e+09 -9.920000e+08   
Other Assets                      3.063000e+09  3.430000e+09  3.352000e+09   
Cash                              1.849800e+10  1.670100e+10  1.071500e+10   
Total Current Liabilities         4.522100e+10  3.462000e+10  2.418300e+10   
Deferred Long Term Asset Charges  7.210000e+08  7.370000e+08  6.800000e+08   
Other Stockholder Equity         -1.232000e+09 -2.306000e+09 -9.920000e+08   
Property Plant Equipment          8.458700e+10  5.971900e+10  4.238300e+10   
Total Current Assets              1.525780e+11  1.356760e+11  1.243080e+11   
Long Term Investments             1.307800e+10  1.385900e+10  7.813000e+09   
Net Tangible Assets               1.788390e+11  1.575200e+11  1.330630e+11   
Short Term Investments            1.011770e+11  9.243900e+10  9.115600e+10   
Net Receivables                   2.749200e+10  2.119300e+10  1.870500e+10   
Long Term Debt                    3.958000e+09  3.950000e+09  3.943000e+09   
Inventory                         9.990000e+08  1.107000e+09  7.490000e+08   
Accounts Payable                  5.561000e+09  4.378000e+09  3.137000e+09   

                                    2016-12-31  
Intangible Assets                 3.307000e+09  
Total Liab                        2.846100e+10  
Total Stockholder Equity          1.390360e+11  
Other Current Liab                5.851000e+09  
Total Assets                      1.674970e+11  
Common Stock                      3.630700e+10  
Other Current Assets              3.175000e+09  
Retained Earnings                 1.051310e+11  
Other Liab                        7.770000e+09  
Good Will                         1.646800e+10  
Treasury Stock                   -2.402000e+09  
Other Assets                      2.202000e+09  
Cash                              1.291800e+10  
Total Current Liabilities         1.675600e+10  
Deferred Long Term Asset Charges  3.830000e+08  
Other Stockholder Equity         -2.402000e+09  
Property Plant Equipment          3.423400e+10  
Total Current Assets              1.054080e+11  
Long Term Investments             5.878000e+09  
Net Tangible Assets               1.192610e+11  
Short Term Investments            7.341500e+10  
Net Receivables                   1.563200e+10  
Long Term Debt                    3.935000e+09  
Inventory                         2.680000e+08  
Accounts Payable                  2.041000e+09  

----------quarterly_financials-------------
                                        2020-09-30  2020-06-30  2020-03-31  \
Research Development                     6.856e+09   6.875e+09    6.82e+09   
Effect Of Accounting Charges                  None        None        None   
Income Before Tax                       1.3359e+10   8.277e+09   7.757e+09   
Minority Interest                             None        None        None   
Net Income                              1.1247e+10   6.959e+09   6.836e+09   
Selling General Administrative           6.987e+09   6.486e+09    7.38e+09   
Gross Profit                            2.5056e+10  1.9744e+10  2.2177e+10   
Ebit                                    1.1213e+10   6.383e+09   7.977e+09   
Operating Income                        1.1213e+10   6.383e+09   7.977e+09   
Other Operating Expenses                      None        None        None   
Interest Expense                          -4.8e+07    -1.3e+07    -2.1e+07   
Extraordinary Items                           None        None        None   
Non Recurring                                 None        None        None   
Other Items                                   None        None        None   
Income Tax Expense                       2.112e+09   1.318e+09    9.21e+08   
Total Revenue                           4.6173e+10  3.8297e+10  4.1159e+10   
Total Operating Expenses                 3.496e+10  3.1914e+10  3.3182e+10   
Cost Of Revenue                         2.1117e+10  1.8553e+10  1.8982e+10   
Total Other Income Expense Net           2.146e+09   1.894e+09    -2.2e+08   
Discontinued Operations                       None        None        None   
Net Income From Continuing Ops          1.1247e+10   6.959e+09   6.836e+09   
Net Income Applicable To Common Shares  1.1247e+10   6.959e+09   6.836e+09   

                                        2019-12-31  
Research Development                     7.222e+09  
Effect Of Accounting Charges                  None  
Income Before Tax                       1.0704e+10  
Minority Interest                             None  
Net Income                              1.0671e+10  
Selling General Administrative           8.567e+09  
Gross Profit                            2.5055e+10  
Ebit                                     9.266e+09  
Operating Income                         9.266e+09  
Other Operating Expenses                      None  
Interest Expense                          -1.7e+07  
Extraordinary Items                           None  
Non Recurring                                 None  
Other Items                                   None  
Income Tax Expense                         3.3e+07  
Total Revenue                           4.6075e+10  
Total Operating Expenses                3.6809e+10  
Cost Of Revenue                          2.102e+10  
Total Other Income Expense Net           1.438e+09  
Discontinued Operations                       None  
Net Income From Continuing Ops          1.0671e+10  
Net Income Applicable To Common Shares  1.0671e+10  

----------isin-------------
US02079K1079

----------earnings-------------
           Revenue     Earnings
Year                           
2016   90272000000  19478000000
2017  110855000000  12662000000
2018  136819000000  30736000000
2019  161857000000  34343000000

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

invest-0.0.13.tar.gz (64.8 kB view details)

Uploaded Source

Built Distribution

invest-0.0.13-py3-none-any.whl (42.9 kB view details)

Uploaded Python 3

File details

Details for the file invest-0.0.13.tar.gz.

File metadata

  • Download URL: invest-0.0.13.tar.gz
  • Upload date:
  • Size: 64.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for invest-0.0.13.tar.gz
Algorithm Hash digest
SHA256 c051552ed8695d2f3503c39e0d1e701539f534aba8b71d944f34b7c397018e4c
MD5 0f654c2d603c096e27e11e6c53dd3c12
BLAKE2b-256 2bad71e86aab93b4e45027622328903d03c4337815ef27d0b8914261f3422ae6

See more details on using hashes here.

File details

Details for the file invest-0.0.13-py3-none-any.whl.

File metadata

  • Download URL: invest-0.0.13-py3-none-any.whl
  • Upload date:
  • Size: 42.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for invest-0.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 90eece3aa13de5855e5cbc2193a76e0be603829e8300213062066f5276151308
MD5 553d2ae9129e6f749e30f5fb63a6c9b0
BLAKE2b-256 8c2c9fcc273bbbdf1e57bbc2e938a0627a48b27f94c953075de323f49115ee05

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page