Skip to main content

A collection of inverse design challenges

Project description

invrs-gym

v1.4.2

Overview

The invrs_gym package is an open-source gym containing a diverse set of photonic design challenges, which are relevant for a wide range of applications such as AR/VR, optical networking, LIDAR, and others.

Each of the challenges consists of a high-dimensional problem in which a physical structure (the photonic device) is optimized. The structure includes typically >10,000 degrees of freedom (DoF), generally including one or more arrays representing the structure or patterning of a layer, and may also include scalar variables representing e.g. layer thickness. In general, the DoF must satisfy certain constraints to be physical: thicknesses must be positive, and layer patterns must be manufacturable---they must not include features that are too small, or too closely spaced.

In general, we seek optimization techniques that reliably produce manufacturable, high-quality solutions and require reasonable compute resources. Among the techniques that could be applied are topology optimization, inverse design, and AI-guided design.

invrs_gym is intended to facilitate research on such methods within the jax ecosystem. It includes several challenges that have been used in previous works, so that researchers may directly compare their results to those of the literature. While some challenges are test problems (e.g. where the structure is two-dimensional, which is unphysical but allows fast simulation), others are actual problems that are relevant e.g. for quantum computing or 3D sensing.

Key concepts

The key types of the challenge are the Challenge and Component objects.

The Component represents the physical structure to be optimized, and has some intended excitation or operating condition (e.g. illumination with a particular wavelength from a particular direction). The Component includes methods to obtain initial parameters, and to compute the response of a component to the excitation.

Each Challenge has a Component as an attribute, and also has a target that can be used to determine whether particular parameters "solve" the challenge. The Challenge also provides functions to compute a scalar loss for use with gradient-based optimization, and additional metrics.

Example

# Select the challenge.
challenge = invrs_gym.challenges.ceviche_lightweight_waveguide_bend()

# Define loss function, which also returns auxilliary quantities.
def loss_fn(params):
    response, aux = challenge.component.response(params)
    loss = challenge.loss(response)
    eval_metric = challenge.eval_metric(response)
    metrics = challenge.metrics(response, params, aux)
    return loss, (response, eval_metric, metrics, aux)

value_and_grad_fn = jax.value_and_grad(loss_fn, has_aux=True)

# Select an optimizer.
opt = invrs_opt.density_lbfgsb(beta=4)

# Generate initial parameters, and use these to initialize the optimizer state.
params = challenge.component.init(jax.random.PRNGKey(0))
state = opt.init(params)

# Carry out the optimization.
for i in range(steps):
    params = opt.params(state)
    (value, (response, eval_metric, metrics, aux)), grad = value_and_grad_fn(params)
    state = opt.update(grad=grad, value=value, params=params, state=state)

With some plotting, this code will produce the following waveguide bend:

Animated evolution of waveguide bend design

Challenges

The current list of challenges is below. Check out the notebooks for ready-to-go examples of each.

Install

pip install invrs_gym

Testing

Some tests are marked as slow and are skipped by default. To run these manually, use

pytest --runslow

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

invrs_gym-1.4.2.tar.gz (61.2 kB view details)

Uploaded Source

Built Distribution

invrs_gym-1.4.2-py3-none-any.whl (72.4 kB view details)

Uploaded Python 3

File details

Details for the file invrs_gym-1.4.2.tar.gz.

File metadata

  • Download URL: invrs_gym-1.4.2.tar.gz
  • Upload date:
  • Size: 61.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for invrs_gym-1.4.2.tar.gz
Algorithm Hash digest
SHA256 ef29973b09c4ad5b7ada5a5860fe2b5bd9cad0e60ffb136774eb26020cf4f542
MD5 b24e90a0bb7d35f51159263bf8160433
BLAKE2b-256 b2eeecdcce6ccbc76bd10d626401a9111bc8e60f6c3a5ac713c1b6be7178416d

See more details on using hashes here.

File details

Details for the file invrs_gym-1.4.2-py3-none-any.whl.

File metadata

  • Download URL: invrs_gym-1.4.2-py3-none-any.whl
  • Upload date:
  • Size: 72.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for invrs_gym-1.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 3ca536a6d92db68ba53c8295877bbe7c63551acdcd9473f47a02dad3ca81fc82
MD5 0a9ee7a9172a137155f2908a652a5b2b
BLAKE2b-256 01b47daa5e38649a9526daaa15e140e064a0d6f48d15efd008125442c29ad8b6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page