Skip to main content

iomb is a package for creating environmentally extended input-output models

Project description

iomb is an open source Python library for creating environmentally extended input-output models (EEIO models) from CSV files in a simple data format. It includes functions to calculate different result types (e.g. life cycle assessment results, direct and upstream contributions, etc.) from such models and convert them into JSON-LD data packages that can be imported into openLCA.

Installation

iomb is tested with Python 3.5 but should also work with older versions of Python 3. The easiest way to install the package is to do so using pip, which is generally packaged with a Python installation. Open up the command line and enter:

pip install IO-Model-Builder

This will also install the dependencies of the IO-Model-Builder (NumPy, pandas, and matplotlib) if required. After this you should be able to use the iomb package in your Python code. To uninstall the package, you can again use pip from the command line:

pip uninstall IO-Model-Builder

Usage

You can find a more detailed example here in form of a Jupyter notebook which is a convenient way to use iomb. The following script shows the basic usage of iomb. For detailed information about the data format see the data format specification

import iomb

# optionally show all logging information of iomb
iomb.log_all()

# create a direct requirements coefficients matrix from a supply and use table
# and save it to a CSV file
drc = iomb.coefficients_from_sut('supply_table.csv', 'use_table.csv')
drc.to_csv('drc.csv')

# create an EEIO model from a coefficients matrix, satellite tables, and a
# LCIA method
model = iomb.make_model('drc.csv',
                        ['satellite_table1.csv', 'satellite_table2.csv'],
                        "sector_meta_data.csv",
                        ['LCIA_factors1.csv', 'LCIA_factors1.csv'])

# validate the model
import iomb.validation as val
vr = validation.validate(model)
print(vr)

# calculate results for a given demand
result = iomb.calculate(model, {'1111a0/oilseed farming/us': 1})
print(result.total_result)

# export the model to a JSON-LD package
import iomb.olca as olca
olca.Export(model).to('model_as_json-ld.zip')

License

This project is in the worldwide public domain, released under the CC0 1.0 Universal Public Domain Dedication.

Public Domain Dedication

Public Domain Dedication

Citation

Please cite as: Srocka, M. and W. Ingwersen (2017). IO Model Builder, v1.1 (or current version). US Environmental Protection Agency. https://www.github.com/usepa/io-model-builder

A brief description of the iomb is also included in: Yang, Y., Ingwersen, W.W., Hawkins, T.R., Srocka, M., Meyer, D.E., 2017. USEEIO: A New and Transparent United States Environmentally-Extended Input-Output Model. Journal of Cleaner Production 158, 308-318. DOI: 10.1016/j.jclepro.2017.04.150

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

IO_Model_Builder-1.1.2-py3-none-any.whl (52.1 kB view details)

Uploaded Python 3

File details

Details for the file IO_Model_Builder-1.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for IO_Model_Builder-1.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 0b84821b99bdf0537c663bc41661ace9b1afa620d4bc6ee3b9b39ef003209ee2
MD5 50a41107f66fd6cced1cb8e19e1057ff
BLAKE2b-256 d1ec32e65910e5bb4a59d9a966dd9aeedf1a515ce5c35e81984ba771f7775016

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page