Image Processing For Machine Learning
Project description
Image Processing For Machine Learning package.
How to use ?
To use, simply do :
>>> from PIL import Image >>> from ipfml import image_processing >>> img = Image.open('path/to/image.png') >>> s = image_processing.get_LAB_L_SVD_s(img)
Modules
This project contains modules.
- image_processingImage processing module
fig2data(fig): Convert a Matplotlib figure to a 3D numpy array with RGB channels and return it
fig2img(fig): Convert a Matplotlib figure to a PIL Image in RGB format and return it
get_LAB_L_SVD_U(image): Returns U SVD from L of LAB Image information
get_LAB_L_SVD_s(image): Returns s (Singular values) SVD from L of LAB Image information
get_LAB_L_SVD_V(image): Returns V SVD from L of LAB Image information
divide_in_blocks(image, block_size): Divide image into equal size blocks
rgb_to_mscn(image): Convert RGB Image into Mean Subtracted Contrast Normalized (MSCN) using only gray level
rgb_to_grey_low_bits(image, bind=15): Convert RGB Image into grey image using only 4 low bits values by default
normalize_arr(arr): Normalize array values
normalize_arr_with_range(arr, min, max): Normalize array values with specific min and max values
normalize_2D_arr(arr): Return 2D array normalize from its min and max values
- metricsMetrics computation of PIL or 2D numpy image
get_SVD(image): Transforms PIL Image into SVD
get_SVD_U(image): Transforms PIL Image into SVD and returns only ‘U’ part
get_SVD_s(image): Transforms PIL Image into SVD and returns only ‘s’ part
get_SVD_V(image): Transforms PIL Image into SVD and returns only ‘V’ part
get_LAB(image): Transforms PIL Image into LAB
get_LAB_L(image): Transforms PIL Image into LAB and returns only ‘L’ part
get_LAB_A(image): Transforms PIL Image into LAB and returns only ‘A’ part
get_LAB_B(image): Transforms PIL Image into LAB and returns only ‘B’ part
get_XYZ(image): Transforms PIL Image into XYZ
get_XYZ_X(image): Transforms PIL Image into XYZ and returns only ‘X’ part
get_XYZ_Y(image): Transforms PIL Image into XYZ and returns only ‘Y’ part
get_XYZ_Z(image): Transforms PIL Image into XYZ and returns only ‘Z’ part
get_low_bits_img(image, bind=15): Returns Image or Numpy array with data information reduced using only low bits (by default 4)
All these modules will be enhanced during development of the project
How to contribute
This git project uses git-flow implementation. You are free to contribute to it.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file IPFML-0.1.2.tar.gz
.
File metadata
- Download URL: IPFML-0.1.2.tar.gz
- Upload date:
- Size: 128.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: Python-urllib/3.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3926fc1f23725c70eb24f462f87f848b60ddfcbf37e08ddb9c424ec5952c26da |
|
MD5 | c23c4f1b916b889f903ee3a1796cc748 |
|
BLAKE2b-256 | e0df0631ba89cff8f8db953b683da2c09307533e8cde3f202ec54e72c8bd736c |