Skip to main content

Image Processing For Machine Learning

Project description

Image Processing For Machine Learning package.

How to use ?

To use, simply do :

>>> from PIL import Image
>>> from ipfml import image_processing
>>> img = Image.open('path/to/image.png')
>>> s = image_processing.get_LAB_L_SVD_s(img)

Modules

This project contains modules.

  • image_processingImage processing module
    • fig2data(fig): Convert a Matplotlib figure to a 3D numpy array with RGB channels and return it

    • fig2img(fig): Convert a Matplotlib figure to a PIL Image in RGB format and return it

    • get_LAB_L_SVD_U(image): Returns U SVD from L of LAB Image information

    • get_LAB_L_SVD_s(image): Returns s (Singular values) SVD from L of LAB Image information

    • get_LAB_L_SVD_V(image): Returns V SVD from L of LAB Image information

    • divide_in_blocks(image, block_size): Divide image into equal size blocks

    • rgb_to_mscn(image): Convert RGB Image into Mean Subtracted Contrast Normalized (MSCN) using only gray level

    • rgb_to_grey_low_bits(image, bind=15): Convert RGB Image into grey image using only 4 low bits values by default

    • normalize_arr(arr): Normalize array values

    • normalize_arr_with_range(arr, min, max): Normalize array values with specific min and max values

    • normalize_2D_arr(arr): Return 2D array normalize from its min and max values

  • metricsMetrics computation of PIL or 2D numpy image
    • get_SVD(image): Transforms PIL Image into SVD

    • get_SVD_U(image): Transforms PIL Image into SVD and returns only ‘U’ part

    • get_SVD_s(image): Transforms PIL Image into SVD and returns only ‘s’ part

    • get_SVD_V(image): Transforms PIL Image into SVD and returns only ‘V’ part

    • get_LAB(image): Transforms PIL Image into LAB

    • get_LAB_L(image): Transforms PIL Image into LAB and returns only ‘L’ part

    • get_LAB_A(image): Transforms PIL Image into LAB and returns only ‘A’ part

    • get_LAB_B(image): Transforms PIL Image into LAB and returns only ‘B’ part

    • get_XYZ(image): Transforms PIL Image into XYZ

    • get_XYZ_X(image): Transforms PIL Image into XYZ and returns only ‘X’ part

    • get_XYZ_Y(image): Transforms PIL Image into XYZ and returns only ‘Y’ part

    • get_XYZ_Z(image): Transforms PIL Image into XYZ and returns only ‘Z’ part

    • get_low_bits_img(image, bind=15): Returns Image or Numpy array with data information reduced using only low bits (by default 4)

All these modules will be enhanced during development of the project

How to contribute

This git project uses git-flow implementation. You are free to contribute to it.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

IPFML-0.1.2.tar.gz (128.7 kB view details)

Uploaded Source

File details

Details for the file IPFML-0.1.2.tar.gz.

File metadata

  • Download URL: IPFML-0.1.2.tar.gz
  • Upload date:
  • Size: 128.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.6

File hashes

Hashes for IPFML-0.1.2.tar.gz
Algorithm Hash digest
SHA256 3926fc1f23725c70eb24f462f87f848b60ddfcbf37e08ddb9c424ec5952c26da
MD5 c23c4f1b916b889f903ee3a1796cc748
BLAKE2b-256 e0df0631ba89cff8f8db953b683da2c09307533e8cde3f202ec54e72c8bd736c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page