Skip to main content

Probability Tilting Methods (IPT) for Causal Inference

Project description

ipt: a Python 2.7 package for causal inference by inverse probability tilting

by Bryan S. Graham, UC - Berkeley, e-mail: bgraham@econ.berkeley.edu

This package includes a Python 2.7 implementation of the Average Treatment Effect of the Treated (ATT) estimator introduced in Graham, Pinto and Egel (2016). The function att() allows for sampling weights as well as “clustered standard errors”, but these features have not yet been extensively tested.

An implementation of the Average Treatment Effect (ATE) estimator introduced in Graham, Pinto and Egel (2012) is planned for a future update.

This package is offered “as is”, without warranty, implicit or otherwise. While I would appreciate bug reports, suggestions for improvements and so on, I am unable to provide any meaningful user-support. Please e-mail me at bgraham@econ.berkeley.edu

Please cite both the code and the underlying source articles listed below when using this code in your research.

A simple example script to get started is:

>>>> # Append location of ipt module root directory to systems path
>>>> # NOTE: Only required if ipt not "permanently" installed
>>>> import sys
>>>> sys.path.append('/Users/bgraham/Dropbox/Sites/software/ipt/')

>>>> # Load ipt package
>>>> import ipt as ipt

>>>> # View help file
>>>> help(ipt.att)

>>>> # Read nsw data directly from Rajeev Dehejia's webpage into a
>>>> # Pandas dataframe
>>>> import numpy as np
>>>> import pandas as pd

>>>> nsw=pd.read_stata("http://www.nber.org/~rdehejia/data/nsw_dw.dta")

>>>> # Make some adjustments to variable definitions in experimental dataframe
>>>> nsw['constant'] = 1                # Add constant to observational dataframe
>>>> nsw['age']      = nsw['age']/10    # Rescale age to be in decades
>>>> nsw['re74']     = nsw['re74']/1000 # Recale earnings to be in thousands
>>>> nsw['re75']     = nsw['re75']/1000 # Recale earnings to be in thousands

>>>> # Treatment indicator
>>>> D = nsw['treat']

>>>> # Balancing moments
>>>> t_W = nsw[['constant','black','hispanic','education','age','re74','re75']]

>>>> # Propensity score variables
>>>> r_W = nsw[['constant']]

>>>> # Outcome
>>>> Y = nsw['re78']

>>>> # Compute AST estimate of ATT
>>>> [gamma_as, vcov_gamma_ast, study_test, auxiliary_test, pi_eff_nsw, pi_s_nsw, pi_a_nsw, exitflag] = \
>>>>                                                                 ipt.att(D, Y, r_W, t_W, study_tilt=True)

CODE CITATION

Graham, Bryan S. (2016). “ipt: a Python 2.7 package for causal inference by inverse probability tilting,” (Version 0.2.2)

[Computer program]. Available at https://github.com/bryangraham/ipt (Accessed 04 May 2016)

PAPER CITATIONS

Graham, Bryan S., Cristine Pinto and Daniel Egel. (2012). “Inverse probability tilting for moment condition models

with missing data,” Review of Economic Studies 79 (3): 1053 - 1079

Graham, Bryan S., Cristine Pinto and Daniel Egel. (2016). “Efficient estimation of data combination models by the

method of auxiliary-to-study tilting (AST),” Journal of Business and Economic Statistics 31 (2): 288 - 301

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ipt-0.2.3.tar.gz (13.8 kB view details)

Uploaded Source

File details

Details for the file ipt-0.2.3.tar.gz.

File metadata

  • Download URL: ipt-0.2.3.tar.gz
  • Upload date:
  • Size: 13.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for ipt-0.2.3.tar.gz
Algorithm Hash digest
SHA256 8ef373c0c1bea823132075fc995f8ea6cb95801b4af09c88009d5bf374a9ecf0
MD5 2aff9903ddf456a657950ea59ee51288
BLAKE2b-256 95b109a5b006d074cdfe4aaf86c3539a68b1a5890372b6123084d89edd77c366

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page