A Jupyter - Chart.js bridge enabling interactive data visualization with Python.
Project description
The power of Chart.js with Python
Installation
You can install ipychart from your terminal using pip or conda:
# using pip
$ pip install ipychart
# using conda
$ conda install -c conda-forge ipychart
Documentation
- Introduction
- Getting Started
- Usage
- Charts
- Configuration
- Scales
- Pandas Interface
- Advanced Features
- Developers
Usage
Create charts with Python in a very similar way to creating charts using Chart.js. The charts created are fully configurable, interactive and modular and are displayed directly in the output of the the cells of your jupyter notebook environment:
You can also create charts directly from a pandas dataframe. See the Pandas Interface section of the documentation for more details.
Development Installation
For a development installation:
$ git clone https://github.com/nicohlr/ipychart.git
$ cd ipychart
$ conda install jupyterlab nodejs -c conda-forge
$ cd ipychart/js
$ npm install yarn
$ npm install
$ cd ..
$ pip install -e .
$ jupyter nbextension install --py --symlink --sys-prefix ipychart
$ jupyter nbextension enable --py --sys-prefix ipychart
References
- Chart.js
- Ipywidgets
- Ipywidgets cookiecutter template
- Chart.js Datalabels
- Chart.js Colorschemes
- Vuepress
- GitHub Pages
License
Ipychart is available under the MIT license.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.