Skip to main content

Simplify IPython cluster start up and use for multiple schedulers.

Project description

https://travis-ci.org/roryk/ipython-cluster-helper.svg https://zenodo.org/badge/3658/roryk/ipython-cluster-helper.svg

Quickly and easily parallelize Python functions using IPython on a cluster, supporting multiple schedulers. Optimizes IPython defaults to handle larger clusters and simultaneous processes.

Example

Lets say you wrote a program that takes several files in as arguments and performs some kind of long running computation on them. Your original implementation used a loop but it was way too slow

from yourmodule import long_running_function
import sys

if __name__ == "__main__":
    for f in sys.argv[1:]:
        long_running_function(f)

If you have access to one of the supported schedulers you can easily parallelize your program across 5 nodes with ipython-cluster-helper

from cluster_helper.cluster import cluster_view
from yourmodule import long_running_function
import sys

if __name__ == "__main__":
    with cluster_view(scheduler="lsf", queue="hsph", num_jobs=5) as view:
        view.map(long_running_function, sys.argv[1:])

That’s it! No setup required.

To run a local cluster for testing purposes pass run_local as an extra parameter to the cluster_view function

with cluster_view(scheduler=None, queue=None, num_jobs=5,
                  extra_params={"run_local": True}) as view:
    view.map(long_running_function, sys.argv[1:])

How it works

ipython-cluster-helper creates a throwaway parallel IPython profile, launches a cluster and returns a view. On program exit it shuts the cluster down and deletes the throwaway profile.

Supported schedulers

Platform LSF (“lsf”), Sun Grid Engine (“sge”), Torque (“torque”), SLURM (“slurm”).

Credits

The cool parts of this were ripped from bcbio-nextgen.

Contributors

  • Brad Chapman (@chapmanb)

  • Mario Giovacchini (@mariogiov)

  • Valentine Svensson (@vals)

  • Roman Valls (@brainstorm)

  • Rory Kirchner (@roryk)

  • Luca Beltrame (@lbeltrame)

  • James Porter (@porterjamesj)

  • Billy Ziege (@billyziege)

  • ink1 (@ink1)

  • @mjdellwo

  • @matthias-k

  • Andrew Oler (@oleraj)

  • Alain Péteut (@peteut)

  • Matt De Both (@mdeboth)

  • Vlad Saveliev (@vladsaveliev)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ipython-cluster-helper-0.6.4.tar.gz (22.8 kB view details)

Uploaded Source

File details

Details for the file ipython-cluster-helper-0.6.4.tar.gz.

File metadata

  • Download URL: ipython-cluster-helper-0.6.4.tar.gz
  • Upload date:
  • Size: 22.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for ipython-cluster-helper-0.6.4.tar.gz
Algorithm Hash digest
SHA256 322b32c7252498ffb48eae2f81617a501dc8a273d84ceeb8daebf6493ba7d5d0
MD5 3f1dc937c0bfe18d03265c25aa282cea
BLAKE2b-256 5a589a63fa4168eb27801317dba2ccbe578da8e93f3b44e2b2c4fc59b4b3a9d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page