Identification and quantification of KEGG Modules in metagenomes/genomes
Project description
iqKM (Identification and Quantification of KEGG Modules)
iqKM is an easy to use pipeline to assign and/or quantify KEGG Orthology (KO) and KEGG modules (KMs) in metagenome/genome.
iqKM -i genome.fna -o out_dir --help_dir help_dir
iqKM -i metagenome.fna -o out_dir --help_dir help_dir --fq raw_reads.fastq(.gz) --meta --quantify
iqKM -h
Detailed pipeline walkthrough
Installation
iqKM is a command line tool developed for Linux and macOS and is available to install from github, bioconda or pypi.
Install via conda (recommended)
Installing iqKM via conda will automatically install all dependencies.
- Step 1: Create the iqKM environment
conda create -n iqkm -c bioconda iqKM
- Step 2: Download Kofam HMM db and help files
conda activate iqkm
# download help_dir, which contains Kofam HMM db and other help_files
wget ftp_link && unzip help_dir
Install via pip
- Step 1: Install third-party dependencies
Before installing iqKM using pip, make sure the following softwares are on the system path, they are all easy-to-install tools.
Software | Version |
---|---|
HMMER | >=3.1 |
Prodigal | >=2.6.3 |
bwa | >= 0.7.17 |
samtools | >= 1.3.1 |
- Step 2: Install iqKM
pip install iqKM
- Step 3: Download Kofam HMM db and help files
# download help_dir, which contains Kofam HMM db and other help_files
wget ftp_link && unzip help_dir
Install from github
- Step 1: Install third-party dependencies
Before installing iqKM, make sure the following softwares are on the system path, they are all easy-to-install tools.
Software | Version |
---|---|
HMMER | >=3.1 |
Prodigal | >=2.6.3 |
bwa | >= 0.7.17 |
samtools | >= 1.3.1 |
- Step 2: Clone the repo and install
git clone https://github.com/lijingdi/iqKM.git
cd /path/to/iqKM
python3 setup.py install
- Step 3: Download Kofam HMM db and help files
# go to our ftp site https://drive.google.com/u/0/uc?export=download&confirm=H3_U&id=1_Kxhox_hqrs7c_fVD8LC8mbwf4vp0ehX and download help_dir.zip
unzip help_dir && cd help_dir
pwd
# /path/to/help_dir
# now you can use above path as --help_dir /path/to/help_dir when running iqkm
Usage
Basic usage
- KMs assignment for individual genomes
iqKM -i genome.fna -o out_dir --help_dir help_dir
- KMs assignment and quantification for individual genomes
iqKM -i genome.fna -o out_dir --help_dir help_dir --fq raw_reads_1.fastq(.gz) --rq raw_reads_2.fastq(.gz) --quantify
- KMs assignment for metagenomes
iqKM -i metagenome.fna -o out_dir --help_dir help_dir --meta
- KMs assignment and quantification for metagenomes
iqKM -i metagenome.fna -o out_dir --help_dir help_dir --fq raw_reads_1.fastq(.gz) --rq raw_reads_2.fastq(.gz) --meta --quantify
Arguments
iqKM -h
iqkm -i input_genome -o out_dir
[--fq fastq_1.gz] [--rq fastq_2.gz] [--prefix PREFIX] [--db HMMdb] [--com float] [--skip] [--quantify] [--meta] [-w] [-n int] [-f] [-d] [-g file]
Required arguments | |
---|---|
-i, --input | input genome/metagenome |
-o, --out_dir | output folder |
--help_dir | Folder containing Kofam HMM database and essential help files, refer to install to download |
Optional arguments | |
---|---|
--fq | input first/single read file, fastq(.gz), only required when '--quantify' is specified |
--rq | input reverse read file, fastq(.gz), only required when '--quantify' is specified |
--prefix | prefix of output files, default: input genome filename without postfix |
--db | Your customised Kofam HMM database, default=None |
--com | KM completeness threshold (%) on contig basis, default=66.67 |
--skip | Force skipping steps if output files exist, default=False |
-q, --quantify | Run both KM assignment and quantification, default=False |
-m, --meta | Run in metagenome mode, default=False |
-w,--include_weights | Enable normalizing KM abundance using KO weights, default=True |
-n, --threads | Number of threads used for computation, default=1 |
-f, --force | Force rerunning the whole pipeline, don't resume previous run, default=False |
-d, --dist | Apply KM minimum distance threshold, default=True |
-g,--genome_equivalent | Genome equivalent output generated from microbe-census, can be used for library-size normalization, optional |
Files output
- output
- prodigal(intermediate output files)
- [prefix].cds
- [prefix].pep
- [prefix].gff
- [prefix].cds.bwa_index (only when '--quantify' is specified)
- hmmsearch (intermediate output files)
- KO_parsing (intermediate output files)
- KM_assignment_unfiltered (intermediate output files)
- KM_assignment_filtered (KM assignment output)
- out_remap (intermediate output files, only when '--quantify' is specified)
- out_abundance (KM abundance output, only when '--quantify' is specified)
- prodigal(intermediate output files)
Acknowledgements
Author of pipeline: Jingdi Li
Principal Investigators: Rob Finn
If you find any errors or bugs, please do not hesitate to contact lijingdioo@outlook.com or open a new Issue thread on this github page, we will get back to you as soon as possible.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file iqkm-1.0.tar.gz
.
File metadata
- Download URL: iqkm-1.0.tar.gz
- Upload date:
- Size: 21.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.0 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 45efd4b0977bdc487b22993cffe327ef0b55ebfa2e29fbbb5b987e9303e4fe14 |
|
MD5 | 7107e22249c548f2ebbdedea2adc4f7d |
|
BLAKE2b-256 | 9d64fabc768dd740b41520cdc3040b28c5939552c0ac4e1889e0609811d6be78 |
File details
Details for the file iqkm-1.0-py3-none-any.whl
.
File metadata
- Download URL: iqkm-1.0-py3-none-any.whl
- Upload date:
- Size: 37.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.0 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c6354867ae727694f999b80e5b91e852913ae01aade1600b8fdae675c610eaa6 |
|
MD5 | e2ac0d7c7d81b12e9b679a4e68a02a47 |
|
BLAKE2b-256 | 1ff902c7b48007c6dca3eb5f6d8d272c2de0f3e13121623b40c55434b2001ccc |