Skip to main content

Identification and quantification of KEGG Modules in metagenomes/genomes

Project description

iqKM (Identification and Quantification of KEGG Modules)

iqKM is an easy to use pipeline to assign and/or quantify KEGG Orthology (KO) and KEGG modules (KMs) in metagenome/genome.

iqKM -i genome.fna -o out_dir --help_dir help_dir
iqKM -i metagenome.fna -o out_dir --help_dir help_dir --fq raw_reads.fastq(.gz) --meta --quantify
iqKM -h

Detailed pipeline walkthrough

iqKM workflow

Installation

iqKM is a command line tool developed for Linux and macOS and is available to install from github, bioconda or pypi.

Install via conda (recommended)

Installing iqKM via conda will automatically install all dependencies.

  • Step 1: Create the iqKM environment
conda create -n iqkm -c bioconda iqKM
  • Step 2: Download Kofam HMM db and help files
conda activate iqkm

# download help_dir, which contains Kofam HMM db and other help_files
wget ftp_link && unzip help_dir

Install via pip

  • Step 1: Install third-party dependencies

Before installing iqKM using pip, make sure the following softwares are on the system path, they are all easy-to-install tools.

Software Version
HMMER >=3.1
Prodigal >=2.6.3
bwa >= 0.7.17
samtools >= 1.3.1
  • Step 2: Install iqKM
pip install iqKM
  • Step 3: Download Kofam HMM db and help files
# download help_dir, which contains Kofam HMM db and other help_files
wget ftp_link && unzip help_dir

Install from github

  • Step 1: Install third-party dependencies

Before installing iqKM, make sure the following softwares are on the system path, they are all easy-to-install tools.

Software Version
HMMER >=3.1
Prodigal >=2.6.3
bwa >= 0.7.17
samtools >= 1.3.1
  • Step 2: Clone the repo and install
git clone https://github.com/lijingdi/iqKM.git
cd /path/to/iqKM
python3 setup.py install
  • Step 3: Download Kofam HMM db and help files
# go to our ftp site https://drive.google.com/u/0/uc?export=download&confirm=H3_U&id=1_Kxhox_hqrs7c_fVD8LC8mbwf4vp0ehX and download help_dir.zip
unzip help_dir && cd help_dir
pwd
# /path/to/help_dir
# now you can use above path as --help_dir /path/to/help_dir when running iqkm

Usage

Basic usage

  • KMs assignment for individual genomes
iqKM -i genome.fna -o out_dir --help_dir help_dir
  • KMs assignment and quantification for individual genomes
iqKM -i genome.fna -o out_dir --help_dir help_dir --fq raw_reads_1.fastq(.gz) --rq raw_reads_2.fastq(.gz) --quantify
  • KMs assignment for metagenomes
iqKM -i metagenome.fna -o out_dir --help_dir help_dir --meta
  • KMs assignment and quantification for metagenomes
iqKM -i metagenome.fna -o out_dir --help_dir help_dir --fq raw_reads_1.fastq(.gz) --rq raw_reads_2.fastq(.gz) --meta --quantify

Arguments

iqKM -h

iqkm -i input_genome -o out_dir [--fq fastq_1.gz] [--rq fastq_2.gz] [--prefix PREFIX] [--db HMMdb] [--com float] [--skip] [--quantify] [--meta] [-w] [-n int] [-f] [-d] [-g file]

Required arguments
-i, --input input genome/metagenome
-o, --out_dir output folder
--help_dir Folder containing Kofam HMM database and essential help files, refer to install to download
Optional arguments
--fq input first/single read file, fastq(.gz), only required when '--quantify' is specified
--rq input reverse read file, fastq(.gz), only required when '--quantify' is specified
--prefix prefix of output files, default: input genome filename without postfix
--db Your customised Kofam HMM database, default=None
--com KM completeness threshold (%) on contig basis, default=66.67
--skip Force skipping steps if output files exist, default=False
-q, --quantify Run both KM assignment and quantification, default=False
-m, --meta Run in metagenome mode, default=False
-w,--include_weights Enable normalizing KM abundance using KO weights, default=True
-n, --threads Number of threads used for computation, default=1
-f, --force Force rerunning the whole pipeline, don't resume previous run, default=False
-d, --dist Apply KM minimum distance threshold, default=True
-g,--genome_equivalent Genome equivalent output generated from microbe-census, can be used for library-size normalization, optional

Files output

Acknowledgements

Author of pipeline: Jingdi Li

Principal Investigators: Rob Finn

If you find any errors or bugs, please do not hesitate to contact lijingdioo@outlook.com or open a new Issue thread on this github page, we will get back to you as soon as possible.

Project details


Release history Release notifications | RSS feed

This version

1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iqkm-1.0.tar.gz (21.5 kB view details)

Uploaded Source

Built Distribution

iqkm-1.0-py3-none-any.whl (37.1 kB view details)

Uploaded Python 3

File details

Details for the file iqkm-1.0.tar.gz.

File metadata

  • Download URL: iqkm-1.0.tar.gz
  • Upload date:
  • Size: 21.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.0 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for iqkm-1.0.tar.gz
Algorithm Hash digest
SHA256 45efd4b0977bdc487b22993cffe327ef0b55ebfa2e29fbbb5b987e9303e4fe14
MD5 7107e22249c548f2ebbdedea2adc4f7d
BLAKE2b-256 9d64fabc768dd740b41520cdc3040b28c5939552c0ac4e1889e0609811d6be78

See more details on using hashes here.

File details

Details for the file iqkm-1.0-py3-none-any.whl.

File metadata

  • Download URL: iqkm-1.0-py3-none-any.whl
  • Upload date:
  • Size: 37.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.0 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for iqkm-1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c6354867ae727694f999b80e5b91e852913ae01aade1600b8fdae675c610eaa6
MD5 e2ac0d7c7d81b12e9b679a4e68a02a47
BLAKE2b-256 1ff902c7b48007c6dca3eb5f6d8d272c2de0f3e13121623b40c55434b2001ccc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page