Skip to main content

Termoelasticity-based fatigue life identification

Project description

Thermoelasticity-based fatigue life estimation

Estimation of vibration fatigue life from thermal images acquisition. The class is based on the modal damage via thermoelasticity [1] and on the FLife package [2].

Install packages using pip

.. code-block:: python

pip install IR_FLife

Import packages

.. code-block:: python

import numpy as np
import matplotlib.pyplot as plt
import pysfmov as sfmov
import IR_FLife as irfl

Material Parameters

.. code-block:: python

k = 6.51               # Slope endurance curve
B = 800.26             # Endurance curve limit [MPa]
C = 7.94 * 10**18      # Fatigue strenght [MPa**k]
km = 1.2 * 10**(-8)    # Thermoelastic coefficient [Pa**(-1)]

Input thermal video

.. code-block:: python

filename = './data/rec.sfmov'        # Filename of thermal acquisition
data = sfmov.get_data(filename)      # Using pysfmov to open it as numpy array [°C]

fs = 400                             # Smapling frequency [Hz]
dt = 1 / fs                          # Time step [s]

stress = 10 * (data / km ) * 10**-6  # Stress [MPa]

Class initialization

.. code-block:: python

td =  irfl.IR_FLife(stress, dt)       # Class initialization

Natural frequency identification from thermal video

If the location is picked with the mouse click

.. code-block:: python

td.loc_selection()           # Mouse selection of central pixel of the roi
f = td.nf_identification()   # Natural frequency identification

If the location id settled with roi cooirdinates

.. code-block:: python

band_pass = [5,100]         # Band pass filter applied during the natural frequency identification
roi_size = 5                # ROI size [pixel]
location = (39, 79, 5, 5)   # Location of interest in the field of view [pixel]

f = td.nf_identification(location = location, roi_size = roi_size, band_pass = band_pass)

Fatigue life estimation

If the fatigue life is wanted at a particular location

.. code-block:: python

location = (39, 79, 5, 5)   # Location of interest in the field of view [pixel]

md = td.get_life(C, k, 'Modal', f = f, location = location)
tb = td.get_life(C, k, 'TovoBenasciutti', location = location)
dk = td.get_life(C, k, 'Dirlik', location = location)
rf = td.get_life(C, k, 'Rainflow', location = location)

print(f'          Rainflow: {rf:4.0f} s')
print(f'            Dirlik: {dk:4.0f} s')
print(f'  Tovo-Benasciutti: {tb:4.0f} s')
print(f'             Modal: {md:4.0f} s')

If the fatigue life is wanted in the spatial domain

.. code-block:: python

md = td.get_life(C, k, 'Modal', f = f)
tb = td.get_life(C, k, 'TovoBenasciutti')
dk = td.get_life(C, k, 'Dirlik')
rf = td.get_life(C, k, 'Rainflow')

Then, the spatial domain results are shown:

.. code-block:: python

plt.figure()

plt.subplot(2,2,1)
plt.imshow(dk)
plt.colorbar()
plt.title('Dirlik')

plt.subplot(2,2,2)
plt.imshow(md)
plt.colorbar()
plt.title('Modal approach')

plt.subplot(2,2,3)
plt.imshow(rf)
plt.colorbar()
plt.title('Rainflow')

plt.subplot(2,2,4)
plt.imshow(tb)
plt.colorbar()
plt.title('Tovo-Benasciutti')

Reference:

[1] Thermoelasticity-based modal damage identification. Lorenzo Capponi, Janko Slavič, Gianluca Rossi, Miha Boltežar International Journal of Fatigue (2020)

[2] Vibration Fatigue by Spectral Methods, From Structural Dynamics to Fatigue Damage – Theory and Experiments. Janko Slavič, Matjaž Mršnik, Martin Česnik, Jaka Javh, Miha Boltežar. ISBN: 9780128221907, Elsevier, 1st September 2020.

Project details


Release history Release notifications | RSS feed

This version

0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

IR_FLife-0.1.tar.gz (5.2 kB view details)

Uploaded Source

File details

Details for the file IR_FLife-0.1.tar.gz.

File metadata

  • Download URL: IR_FLife-0.1.tar.gz
  • Upload date:
  • Size: 5.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for IR_FLife-0.1.tar.gz
Algorithm Hash digest
SHA256 1a698135f5c76ac7798ed1d27802126be9ca16294c467e56663e6399457eefb2
MD5 46d73ef14f0f35d3fe6516ea14d1317d
BLAKE2b-256 ea1f2a5eda67a60d71e087d0a5e506599ee5158371eb78f37660a2b98bd95541

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page