Skip to main content

The python package to deal with infrared LDR and Teff.

Project description

ir_ldr

The package ir_ldr is for measuring the spectral line depth of the APOGEE and WINERED spectra, calculating the line depth ratio (LDR) and finally deriving the effective temperature (T_LDR).

The LDR-Teff relations inside this package are from Jian+19, Taniguchi+18 and Jian+20a (in prep.). Please also refer to Fukue+15.

This package relys on numpy, pandas, matplotlib and scipy; it is based on python 3.

Installation

pip install ir_ldr

Tutorial

The synthetic spectra of a dwarf star (Teff=5000 K, logg=4.5 dex and feh=0 dex; generated from MOOG) in ir_ldr/file/dwarf for an example of T_LDR calculation.

# Load the linelist.
linelist = ir_ldr.load_linelist('yj', 'dwarf-j20a')

# Here we use all the orders of synthetic spectra.
for order in [43, 44, 45, 46, 47, 48, 52, 53, 54, 55, 56, 57]:
    # Load the synthetic spectra
    spec = pd.read_csv(ir_ldr.__path__[0] + '/file/example_spectra/dwarf/order{}.txt'.format(order),
                       sep=' +', skiprows=2, engine='python', names=['wav', 'residual'])
    wav = spec['wav'].values
    residual = spec['residual'].values

    # Select the line pairs for a specific order
    linelist_sub = linelist[linelist['order'] == order]
    if len(linelist_sub) == 0:
        continue
    linelist_sub.reset_index(drop=True, inplace=True)

    # Measure the line depth of low(1)- and high(2)-EP line.
    # Here the signal to noise ratio for the target star and telluric standard are
    # manually set as 300, but the S_N of synthetic spectra is much higher than that.
    d1 = ir_ldr.depth_measure(wav, residual, linelist_sub['linewav1'], suffix=1, S_N=[300, 300])
    d2 = ir_ldr.depth_measure(wav, residual, linelist_sub['linewav2'], suffix=2, S_N=[300, 300])

    # Calculate the logLDR value.
    lgLDR = ir_ldr.cal_ldr(d1, d2, type='lgLDR')
    # Combine the Dataframes of one order.
    record = ir_ldr.combine_df([linelist_sub, d1, d2, lgLDR])

    if order == 43:
        record_all = record
    else:
        record_all = pd.concat([record_all, record], sort=False)

# Calculate T_LDR
LDR = ir_ldr.ldr2tldr_winered_solar(record_all, df_output=True)

And the result (T_LDR, T_LDR_err) is:

LDR[0:2]
>>> (5009.857201559249, 22.35966233607925)
# Note the T_LDR_err is not an accurate estimation here since the S_N is manually set.

Author

Mingjie Jian (ssaajianmingjie@gmail.com)

PhD student, Department of Astronomy, the University of Tokyo

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

ir_ldr_mingjie-0.1.4-py3-none-any.whl (163.7 kB view details)

Uploaded Python 3

File details

Details for the file ir_ldr_mingjie-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: ir_ldr_mingjie-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 163.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.14.2 setuptools/46.0.0 requests-toolbelt/0.8.0 tqdm/4.19.4 CPython/3.5.4

File hashes

Hashes for ir_ldr_mingjie-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 723e7ba3f02ef111e76ec282ee09137d23626fb243069875496aabafdd8be55b
MD5 7d47c47afddd80791fa47ed03a04451e
BLAKE2b-256 0013a1272092cd828fb95441b98bdae6a2f165444cee6964d667b6c7b12822a4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page