provides a common interface to many IR measure tools
Project description
ir_measures
New: Explore IR measures using our demo at demo.ir-measur.es!
Check out our documentation website: ir-measur.es
Provides a common interface to many IR measure tools.
Provided by the Terrier Team @ Glasgow. Find us at terrierteam/ir_measures.
Getting Started
Install via pip
pip install ir-measures
Python API
import ir_measures
from ir_measures import * # imports all supported measures, e.g., AP, nDCG, RR, P
qrels = {
'Q0': {"D0": 0, "D1": 1},
"Q1": {"D0": 0, "D3": 2}
}
run = {
'Q0': {"D0": 1.2, "D1": 1.0},
"Q1": {"D0": 2.4, "D3": 3.6}
}
# aggregated results
ir_measures.calc_aggregate([AP, nDCG, RR, nDCG@10, P(rel=2)@10], qrels, run)
# {AP: 0.75, nDCG: 0.8154648767857288, RR: 0.75, nDCG@10: 0.8154648767857288, P(rel=2)@10: 0.05}
# by query
for m in ir_measures.iter_calc([AP, nDCG, RR, nDCG@10, P(rel=2)@10], qrels, run):
print(m)
# Metric(query_id='Q0', measure=AP, value=0.5)
# Metric(query_id='Q0', measure=RR, value=0.5)
# Metric(query_id='Q0', measure=nDCG, value=0.6309297535714575)
# Metric(query_id='Q0', measure=nDCG@10, value=0.6309297535714575)
# Metric(query_id='Q1', measure=AP, value=1.0)
# Metric(query_id='Q1', measure=RR, value=1.0)
# Metric(query_id='Q1', measure=nDCG, value=1.0)
# Metric(query_id='Q1', measure=nDCG@10, value=1.0)
# Metric(query_id='Q0', measure=P(rel=2)@10, value=0.0)
# Metric(query_id='Q1', measure=P(rel=2)@10, value=0.1)
Qrels can be provided in the following formats:
# dict of dict
qrels = {
'Q0': {
"D0": 0,
"D1": 1,
},
"Q1": {
"D0": 0,
"D3": 2
}
}
# dataframe
import pandas as pd
qrels = pd.DataFrame([
{'query_id': "Q0", 'doc_id': "D0", 'relevance': 0},
{'query_id': "Q0", 'doc_id': "D1", 'relevance': 1},
{'query_id': "Q1", 'doc_id': "D0", 'relevance': 0},
{'query_id': "Q1", 'doc_id': "D3", 'relevance': 2},
])
# any iterable of namedtuples (e.g., list, generator, etc)
qrels = [
ir_measures.Qrel("Q0", "D0", 0),
ir_measures.Qrel("Q0", "D1", 1),
ir_measures.Qrel("Q1", "D0", 0),
ir_measures.Qrel("Q1", "D3", 2),
]
# TREC-formatted qrels file
qrels = ir_measures.read_trec_qrels('qrels.txt')
# qrels from the ir_datasets package (https://ir-datasets.com/)
import ir_datasets
qrels = ir_datasets.load('trec-robust04').qrels_iter()
Runs can be provided in the following formats:
# dict of dict
run = {
'Q0': {
"D0": 1.2,
"D1": 1.0,
},
"Q1": {
"D0": 2.4,
"D3": 3.6
}
}
# dataframe
import pandas as pd
run = pd.DataFrame([
{'query_id': "Q0", 'doc_id': "D0", 'score': 1.2},
{'query_id': "Q0", 'doc_id': "D1", 'score': 1.0},
{'query_id': "Q1", 'doc_id': "D0", 'score': 2.4},
{'query_id': "Q1", 'doc_id': "D3", 'score': 3.6},
])
# any iterable of namedtuples (e.g., list, generator, etc)
run = [
ir_measures.ScoredDoc("Q0", "D0", 1.2),
ir_measures.ScoredDoc("Q0", "D1", 1.0),
ir_measures.ScoredDoc("Q1", "D0", 2.4),
ir_measures.ScoredDoc("Q1", "D3", 3.6),
]
Command Line Interface
ir_measures also functions as a command line interface, with syntax similar to trec_eval.
Example:
ir_measures /path/to/qrels /path/to/run P@10 'P(rel=2)@5 nDCG@15 Judged@10' NumQ NumRel NumRet NumRelRet
P@10 0.4382
P(rel=2)@5 0.0827
nDCG@15 0.4357
Judged@10 0.9812
NumQ 249.0000
NumRel 17412.0000
NumRet 241339.0000
NumRet(rel=1) 10272.0000
Syntax:
ir_measures qrels run measures... [-q] [-n] [-p 4]
qrels
: a TREC-formatted QRELS filerun
: a TREC-formatted results filemeasures
: one or more measure name strings. Note that in bash,()
must be in single quotes. For simplicity, you can provide multiple meaures in a single quotation, which are split on whitespace.-q
: provide results for each query individually-n
: when used with-q
, skips summary statistics-p
: number of decimal places to report results (default: 4)
PyTerrier API
PyTerrier uses ir_measures:
from pyterrier.measures import *
pt.Experiment(
[bm25],
topics,
qrels,
measures=[P@10, P(rel=2)@5, nDCG@15]
Documentation
Credits
- Sean MacAvaney, University of Glasgow
- Craig Macdonald, University of Glasgow
- Charlie Clarke, University of Waterloo
- Benjamin Piwowarski, CNRS
- Harry Scells, Leipzig University
If you use this package, be sure to cite:
@inproceedings{DBLP:conf/ecir/MacAvaneyMO22a,
author = {Sean MacAvaney and
Craig Macdonald and
Iadh Ounis},
title = {Streamlining Evaluation with ir-measures},
booktitle = {Advances in Information Retrieval - 44th European Conference on {IR}
Research, {ECIR} 2022, Stavanger, Norway, April 10-14, 2022, Proceedings,
Part {II}},
series = {Lecture Notes in Computer Science},
volume = {13186},
pages = {305--310},
publisher = {Springer},
year = {2022},
url = {https://doi.org/10.1007/978-3-030-99739-7\_38},
doi = {10.1007/978-3-030-99739-7\_38}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ir_measures-0.3.4.tar.gz
(50.6 kB
view details)
File details
Details for the file ir_measures-0.3.4.tar.gz
.
File metadata
- Download URL: ir_measures-0.3.4.tar.gz
- Upload date:
- Size: 50.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 160b54c62666a11bfad111c25ff08fa8d7e751a0a52ecad0247f4a4585e8ec3a |
|
MD5 | facdd084a61ac4c7b2a2ec441c1696fc |
|
BLAKE2b-256 | c46176d001d0b16c900a93435fe0e36de11816a4602ee0e621702fd0755634f9 |