Skip to main content

Ultrafast electron diffraction data exploration

Project description

Iris - Ultrafast Electron Scattering Data Exploration

Documentation Build Status PyPI Version Conda-forge Version

Iris is both a library for interacting with ultrafast electron diffraction data, as well as a GUI frontend for interactively exploring this data.

Iris also includes a plug-in manager so that you can explore your data.

Two instances of the iris GUI showing data exploration for ultrafast electron diffraction of single crystals and polycrystals.

Contents:

Installation

To interact with iris datasets from a Python environment, the iris package must be installed. iris is available on PyPI; it can be installed with pip.:

python -m pip install iris-ued

iris is also available on the conda-forge channel:

conda config --add channels conda-forge
conda install iris-ued

To install the latest development version from Github:

python -m pip install git+git://github.com/LaurentRDC/iris-ued.git

Each version is tested against Python 3.7+. If you are using a different version, tests can be run using the pytest package.

Windows Installers

For Windows, installers are available on the Releases page. You will still need to install iris via pip or conda to use the scripting functionality.

Usage

Once installed, the package can be imported as iris.

The GUI component can be launched from a command line interpreter as python -m iris or pythonw -m iris (no console window). See the documentation for a visual guide.

Documentation

The Documentation on readthedocs.io provides API-level documentation, as well as tutorials.

Citations

If you find this software useful, please consider citing the following publication:

L. P. René de Cotret, M. R. Otto, M. J. Stern. and B. J. Siwick, An open-source software ecosystem for the interactive exploration of ultrafast electron scattering data, Advanced Structural and Chemical Imaging 4:11 (2018) DOI: 10.1186/s40679-018-0060-y.

If you are using the baseline-removal functionality of iris-ued, please consider citing the following publication:

L. P. René de Cotret and B. J. Siwick, A general method for baseline-removal in ultrafast electron powder diffraction data using the dual-tree complex wavelet transform, Struct. Dyn. 4 (2017) DOI: 10.1063/1.4972518.

Support / Report Issues

All support requests and issue reports should be filed on Github as an issue.

License

iris is made available under the GPLv3 License. For more details, see LICENSE.txt.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iris-ued-5.3.1.tar.gz (408.5 kB view details)

Uploaded Source

Built Distributions

iris_ued-5.3.1-py3.9.egg (203.9 kB view details)

Uploaded Egg

iris_ued-5.3.1-py3.8.egg (163.3 kB view details)

Uploaded Egg

iris_ued-5.3.1-py3.7.egg (162.5 kB view details)

Uploaded Egg

iris_ued-5.3.1-py3-none-any.whl (82.6 kB view details)

Uploaded Python 3

File details

Details for the file iris-ued-5.3.1.tar.gz.

File metadata

  • Download URL: iris-ued-5.3.1.tar.gz
  • Upload date:
  • Size: 408.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for iris-ued-5.3.1.tar.gz
Algorithm Hash digest
SHA256 053e4847a8651dd5cc04872329acb22b21eae319c02cc824d975179957c2f493
MD5 d819edc9ca2f38f020403af4134e404c
BLAKE2b-256 ffb544444a8f935684eeaaa79bca3f1371dcc9c57a89834db09ec13de2a5d461

See more details on using hashes here.

File details

Details for the file iris_ued-5.3.1-py3.9.egg.

File metadata

  • Download URL: iris_ued-5.3.1-py3.9.egg
  • Upload date:
  • Size: 203.9 kB
  • Tags: Egg
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for iris_ued-5.3.1-py3.9.egg
Algorithm Hash digest
SHA256 f109b5f8db6decbfcd227bc28767149a2fd3225b97552f0e8735181e9acbe8b0
MD5 490ca16023b539c072bc9064a9ccbcb3
BLAKE2b-256 0a202a6a22dd869e3940441bd6086ca9b5c5779898fc8d782a77d44437a98014

See more details on using hashes here.

File details

Details for the file iris_ued-5.3.1-py3.8.egg.

File metadata

  • Download URL: iris_ued-5.3.1-py3.8.egg
  • Upload date:
  • Size: 163.3 kB
  • Tags: Egg
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for iris_ued-5.3.1-py3.8.egg
Algorithm Hash digest
SHA256 26ded016c87045c9ab0a79b83cd6c0ff1436f30732a2153aea719776dd1cd92d
MD5 344f60b8e2ba96304832095e75873c27
BLAKE2b-256 c3b429bf96b425a61bef4fec90a878cb13a3235714b7ccc5576a13788f5e6ad0

See more details on using hashes here.

File details

Details for the file iris_ued-5.3.1-py3.7.egg.

File metadata

  • Download URL: iris_ued-5.3.1-py3.7.egg
  • Upload date:
  • Size: 162.5 kB
  • Tags: Egg
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for iris_ued-5.3.1-py3.7.egg
Algorithm Hash digest
SHA256 80dadf7c2e49d6b0017bd448e72228687bbc6bac3db4ad7a45703bb4b6671957
MD5 a5dc470fabdcb8b83bcff568dcbf0567
BLAKE2b-256 cabd840c88d5518fc879478d1ec967c95810223b6e86bb40831c49ae2e2002b7

See more details on using hashes here.

File details

Details for the file iris_ued-5.3.1-py3-none-any.whl.

File metadata

  • Download URL: iris_ued-5.3.1-py3-none-any.whl
  • Upload date:
  • Size: 82.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for iris_ued-5.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 97a41a5bbb0416a53f648e186ad29ac96d459bf3303153aa788dbaeb0db62d35
MD5 01011abd479efc14d19691ad63600e8f
BLAKE2b-256 402a2242bbba7edfd3e46754000af60377ca4649f8d73d965514d99ed9d75497

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page