Skip to main content

Daugman implementation to segement iris and pupil

Project description

irisSeg

Segementation of iris and pupil.

Daugman algorithm:

image

where I(x,y) is the eye image, r is the radius to searches over the image (x,y), G(r) is a Gaussian smoothing function. The algorithm starts to search from the pupil, in order to detect the changing of maximum pixel values (partial derivative).

Installation

pip install irisSeg

Usage

from irisSeg import irisSeg
import matplotlib.pyplot as plt
#
# you can also view using the argument in irisSeq function
#
coord_iris, coord_pupil, output_image = irisSeg('UBIRIS_200_150_R/Sessao_1/1/Img_1_1_1.jpg', 40, 70)
print(coord_iris) # radius and the coordinates for the center of iris 
print(coord_pupil) # radius and the coordinates for the center of pupil 
plt.imshow(output_image)
plt.show()

use as a commandline tool

>>iris-seg file_path min_radius max_radius

image

image

References

  1. https://www.diva-portal.org/smash/get/diva2:831173/FULLTEXT01.pdf
  2. https://uk.mathworks.com/matlabcentral/fileexchange/15652-iris-segmentation-using-daugman-s-integrodifferential-operator

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

irisSeg-0.3.tar.gz (6.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

irisSeg-0.3-py2.py3-none-any.whl (8.3 kB view details)

Uploaded Python 2Python 3

File details

Details for the file irisSeg-0.3.tar.gz.

File metadata

  • Download URL: irisSeg-0.3.tar.gz
  • Upload date:
  • Size: 6.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.6.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for irisSeg-0.3.tar.gz
Algorithm Hash digest
SHA256 38987e07407794740fec2b0ba28bcdcfad95202899817871f0fac93531025826
MD5 c9bad54ea830c49cc7dc16287376a393
BLAKE2b-256 a11af756b5b0204aa0226b86fe31e8fb399e0552dd5a523fd3c901b7f027fb41

See more details on using hashes here.

File details

Details for the file irisSeg-0.3-py2.py3-none-any.whl.

File metadata

  • Download URL: irisSeg-0.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 8.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.6.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for irisSeg-0.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 7e610eee8143358703487ce771ecf72f6a73afbbb77e1b4cf5c88f19734c26db
MD5 989dc1e75dc1f9003b9d13a27ba29540
BLAKE2b-256 37e410849f5a50e76d57796027f64086224f6eae254f275a1015074c4c1c6beb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page