Skip to main content

Simple ML pipeline platform

Project description

IrisML

Proof of Concept for a simple framework to create a ML pipeline.

Features

  • Run a ML training/inference with a simple JSON configuration.
  • Modularized interfaces for task components.
  • Cache task outputs for faster experiments.

Getting started

Installation

Prerequisite: python 3.8+

# Install the core framework and standard tasks.
pip install irisml irisml-tasks irisml-tasks-training

Run an example job

# Install additional packages that are required for the example
pip install irisml-tasks-torchvision

# Run on local machine
irisml_run docs/examples/mobilenetv2_mnist_training.json

Available commands

# Run the specified pipeline. You can provide environment variables by "-e" option, which will be acceible through $env variable in the json config.
irisml_run <pipeline_json_path> [-e <ENV_NAME>=<env_value>] [--no_cache] [--no_cache_read] [-v]

# Show information about the specified task. If <task_name> is not provided, shows a list of available tasks in the current environment.
irisml_show [<task_name>]

# Manage a cache storage on Azure Blob Storage
# list - Show a list of matched blobs.
# download - Download matched blobs.
# remove - Remove matched blobs.
# show - Show the contents of matched blobs.
irisml_cache <list|download|remove|show> [--mtime <+|->N] [--name NAME]

Pipeline definition

PipelineDefinition = {"tasks": List[TaskDefinition], "on_error": Optional[List[TaskDescription]]}

TaskDefinition = {
    "task": <task module name>,
    "name": <optional unique name of the task>,
    "inputs": <list of input objects>,
    "config": <config for the task. Use irisml_show command to find the available configurations.>
}

In the TaskDefinition.inputs and TaskDefinition.config, you cna use the following two variable.

  • $env.<variable_name> This variable will be replaced by the environment variable that was provided as arguments for irisml_run command.
  • $outputs.<task_name>.<field_name> This variable will be replaced by the outputs of the specified previous task.

It raises an exception on runtime if the specified variable was not found.

If a task raised an exception, the tasks specified in on_error field will be executed. The exception object will be assigned to "$env.IRISML_EXCEPTION" variable.

Patch definition (Experimental)

PatchesDefinition = {"patches": List[PatchDefinition], "patches_on_error": List[PatchDefinition]}  # At least one of the fields must be specified.

PatchDefinition = {  # One of the filtering conditions and one of the actions must be specified.
    # Filtering conditions
    "match": List[MatchCondition],
    "match_if_exists": List[MatchCondition],  # Matches the task if it exists. If not, the patch will be ignored.
    "match_oneof": List[MatchCondition],  # Matches the first task that matches one of the conditions.
    "top": bool,  # Matches the top of the pipeline. Used with "insert" action.
    "bottom": bool,  # Matches the bottom of the pipeline. Used with "insert" action.

    # Actions
    "insert": List[TaskDefinition],
    "remove": bool,
    "replace": Tuple[List[TaskDefinition], Dict[str, str]], # The second element is a mapping from the old output name to the new output name. All "$output" variables will be replaced by the new output name.
    "update": TaskDefinition
}

MatchCondition = {  # All fields are optional.
    "task": str,
    "name": str,
    "config": Dict[str, Any]
}

The available actions are as follows:

  • insert: Insert the specified tasks after the matched task.
  • remove: Remove the matched task.
  • replace: Replace the matched task with the specified tasks.
  • update: Update the matched task with the given configuration.

Note that the patch command doesn't guarantee the correctness of the patched pipeline. It is recommended to validate the patched pipeline.

Pipeline cache

Using cache, you can modify and re-run a pipeline config with minimum cost. If the cache is enabled, IrisML will calculate hash values for all task inputs/configs and upload the task outputs to a specified storage. When it found a task with same hash values, it can download the cache and skip the task execution.

To enable cache, you must specify the cache storage location by setting IRISML_CACHE_URL environment variable. Currently Azure Blob Storage and local filesystem is supported.

To use Azure Blob Storage, a container URL must be provided. It the URL contains a SAS token, it will be used for authentication. Otherwise, interactive authentication and Managed Identity authentication will be used.

Python API

To run a pipeline from python code, you can use the following APIs.

import json
import pathlib
from irisml.core import JobRunner

job_description = json.loads(pathlib.Path('example.json').read_text())
runner = JobRunner(job_description)

runner.run({'DATASET_NAME': 'mnist'})

runner.run({'DATASET_NAME': 'cifar10'})

Available official tasks

To show the detailed help for each task, run the following command after installing the package.

irisml_show <task_name>

irisml-tasks

Task Description
assertion Assert the given input.
assign_class_to_strings Assigns a class to a string based on the class name being present in the string.
branch 'If' conditional branch.
calculate_cosine_similarity Calculate cosine similarity between two sets of vectors.
check_model_parameters Check Inf/NaN values in model parameters.
compare Compare two values
compare_ints Compare two int values.
convert_detection_to_multilabel Convert targets or predictions of object detection to multilabel.
convert_string_to_string_list Convert a string to a list of strings.
deserialize_tensor Deserialize a pytorch tensor.
divide_float Floating point division.
download_azure_blob Download a single blob from Azure Blob Storage.
emulate_fp8_quantization Emulate FP8 quantization.
extract_image_bytes_from_dataset Extract images from a dataset and convert them to bytes.
get_current_time Get the current time in seconds since the epoch
get_dataset_split Get a train/val split of a dataset.
get_dataset_stats Get statistics of a dataset.
get_dataset_subset Get a subset of a dataset.
get_fake_image_classification_dataset Generate a fake image classification dataset.
get_fake_image_text_classification_dataset Generate a fake image-text classification dataset.
get_fake_object_detection_dataset Generate a fake object detection dataset.
get_fake_phrase_grounding_dataset Generate a fake phrase grounding dataset.
get_fake_visual_question_answering_dataset Generate a fake visual question answering dataset.
get_int_from_json_strings Get an integer from a JSON string.
get_int_list_from_json_strings Get a list of ints from a JSON string.
get_item Get an item from the given list.
get_key_and_int_list_from_json_string Parse a JSON string and return a list of keys and a list of lists of ints.
get_kfold_cross_validation_dataset Get train/test dataset for k-fold cross validation.
get_secret_from_azure_keyvault Get a secret from Azure KeyVault.
get_topk Get the largest Topk values and indices.
join_filepath Join a given dir_path and a filename.
join_two_strings Join two strings to one string.
load_coco_detections Load coco detections from a JSON to a list of tensors.
load_float_tensor_jsonl Load a 2D float tensor from a JSONL file.
load_state_dict Load a state_dict from various sources.
load_str_list_jsonl Load a list of strings from a JSONL file.
load_strs_from_json_file Load strings from a JSON file.
load_tensor_list Load a list of tensors from file.
make_cached_dataset Save dataset cache on disk.
make_prompt_for_each_string Make a prompt for each string.
make_prompt_list_with_strings Make a list of prompts from a template and a list of strings.
make_prompt_with_strings Make a prompt with a list of strings.
make_random_choice_text_transform Make a text transform function that randomly chooses one of the substrings separated by the delimiter.
make_text_transform Make a text transform function.
map_int_list Map a list of integers to a list of integers.
pickling_object Pickling an object.
print Print or Pretty Print the input object.
print_environment_info Print various environment information to stdout/stderr.
read_file Reads a file and returns its contents as bytes.
repeat_tasks Repeat the given tasks for multiple times.
run_parallel Run the given tasks in parallel. A new process will be forked for each task. Each task must have an unique name.
run_profiler Run profiler on the given tasks.
run_sequential Run the given tasks in sequence. Each task must have an unique name.
save_file Save the given input binary to a file.
save_float_tensor_jsonl Save a 2D float tensor to a JSONL file.
save_images_from_dataset Save images from a dataset to disk.
save_jit_model Save an offline version of a pytorch model. torch.jit.save()
save_state_dict Save the model's state_dict to the specified file.
save_str_list_jsonl Save a list of strings to a JSONL file.
search_grid_sequential Grid search hyperparameters. Tasks are run in sequence.
serialize_tensor Serialize a pytorch tensor.
split_string Split string to a list of strings.
switch_pick pick from vals based on conditions. Task will return the first val with condition being True.
upload_azure_blob Upload a binary file to Azure Storage Blob.
upload_azure_blob_directory Upload a directory to Azure Blob Storage.

irisml-tasks-training

This package contains tasks related to pytorch training.

Task Description
append_classifier Append a classifier model to a given model. A predictor and a loss module will be added, too.
benchmark_dataset Benchmark dataset loading and preprocessing
benchmark_model Benchmark a given model using a given dataset.
benchmark_model_with_grad_cache Benchmark a given model using a given dataset with grad caching. Useful for cases which require sub batching.
build_classification_prompt_dataset Create a classification prompt dataset.
build_zero_shot_classifier Create a zero-shot classification layer.
concatenate_datasets Concatenate the given two datasets together.
convert_vqa_dataset_to_image_text_classification_dataset Convert VQA dataset to image text classification dataset.
create_classification_prompt_generator Create a prompt generator for a classification task.
create_prompt_generator Create a prompt generator that returns a list of prompts for a given label.
evaluate_accuracy Calculate accuracy of the given prediction results.
evaluate_captioning Evaluate captioning prediction results.
evaluate_detection_average_precision Calculate mean average precision for object detection task results.
evaluate_phrase_grounding Calculate precision/recall for phrase grounding.
evaluate_phrase_grounding_recall Calculate recall for phrase grounding.
evaluate_string_matching_accuracy Calculate accuracy of string matching.
exclude_negative_samples_from_classification_dataset Exclude negative samples from classification dataset.
export_coco_from_torch_dataset Export coco dataset from a given torch dataset. Support IC and OD only.
export_onnx Export the given model as ONNX.
extract_val_by_key_from_jsonl Extract value for each entry in a JSONL by a key.
find_incorrect_classification_indices Find incorrect classification indices.
find_incorrect_classification_multilabel_indices Find incorrect classification indices for multilabel classification.
flatten_captioning_dataset Flatten a captioning dataset with multiple targets per image into a dataset with a single target per image.
get_questions_from_vqa_dataset Extracts questions from a VQA dataset.
get_subclass_dataset Get the sub-dataset with given class ids from a dataset.
get_targets_from_dataset Extract only targets from a given Dataset.
load_jsonl_vqa_dataset Load a VQA dataset from a jsonl file.
load_simple_classification_dataset Load a simple classification dataset from a directory of images and an index file.
make_classification_dataset_from_object_detection Convert an object detection dataset into a classification dataset.
make_classification_dataset_from_predictions Make a classification dataset from predictions.
make_detection_dataset_from_predictions Make a detection dataset from predictions.
make_feature_extractor_model Make a wrapper model to extract a feature vector from a vision model.
make_fixed_prompt_image_transform Make a transform function for image and a fixed prompt.
make_fixed_text_dataset Create a dataset with a list of strings.
make_image_text_contrastive_model Make a model for image-text contrastive training.
make_image_text_transform Make a transform function for image-text classification.
make_oversampled_dataset Make an oversampled dataset.
make_phrase_grounding_image_transform Make phrase grounding image transform.
make_prompt_list_image_transform Make a transform function for image and prompt list.
make_vqa_collate_function Creates a collate_function for Visual Question Answering (VQA) and Phrase Grounding task.
make_vqa_image_transform Creates a transform function for VQA task.
map_classification_predictions_to_detection Map classification predictions back to detection predictions or targets.
num_iters_to_epochs Convert number of iterations to number of epochs. Min value is 1.
predict Predict using a given model.
remove_empty_images_from_dataset Remove empty images from dataset.
sample_few_shot_dataset Few-shot sampling of a IC/OD dataset.
save_jsonl_vqa_dataset Save a VQA dataset to a JSONL file.
split_image_text_model Split a image-text model into an image model and a text model.
train Train a pytorch model.
train_with_gradient_cache Train a model using gradient cache. Useful for contrastive learning with a large model.

irisml-tasks-azure-computervision

Task Description
create_azure_computervision_caption_model Create Azure Computer Vision Caption Model.
create_azure_computervision_classification_model Create Azure Computer Vision Caption Model.
create_azure_computervision_custom_model Create a model that run inference with a custom model in Azure Computer Vision.
create_azure_computervision_ocr_model Create Azure Computer Vision OCR model.
create_azure_computervision_product_recognizer_model Create a model that run inference with a product recognizer model in Azure Computer Vision.
create_azure_computervision_vectorization_model Create Azure Computer Vision Vectorization Model.
delete_azure_computervision_custom_model Delete Azure Computer Vision Custom Model.
train_azure_computervision_custom_model Train Azure Computer Vision Custom Model.

irisml-tasks-azure-customvision

Task Description
create_azure_customvision_docker_model Create a model from an exported Azure Custom Vision Docker image.
create_azure_customvision_model Create a prediction model from an Azure Custom Vision project.
create_azure_customvision_project Create a new Azure Custom Vision project.
delete_azure_customvision_project Delete an Azure Custom Vision project
export_azure_customvision_model Export a model from an Azure Custom Vision project.
train_azure_customvision_project Train an Azure Custom Vision project.

irisml-tasks-azure-openai

Task Description
call_azure_openai_completion Call Azure OpenAI Text Completion API.
create_azure_openai_chat_model Create a model that generates text using Azure OpenAI completion API.
create_azure_openai_completion_model Create a model that generates text using Azure OpenAI completion API.

irisml-tasks-azureml

Task Description
run_azureml_child Run tasks as a new child AzureML Run.

irisml-tasks-fiftyone

Task Description
launch_fiftyone Launch a fiftyone app.

irisml-tasks-llava

Task Description
create_llava_model Create a LLaVA model from a pretrained weights.

irisml-tasks-onnx

Adapter tasks for OnnxRuntime library.

Task Description
benchmark_onnx Bencharmk a given onnx model using onnxruntime.
predict_onnx Predict using a given onnx model traced with the export_onnx task

irisml-tasks-timm

Adapter for models in timm library.

Task Description
create_timm_model Create a timm model.
create_timm_transform Create timm transforms.

irisml-tasks-torchmetrics

Adapter tasks for torchmetrics library.

Task Description
evaluate_torchmetrics_classification_multiclass Evaluate predictions results using torchmetrics classification metrics for multiclass classification problems.
evaluate_torchmetrics_classification_multilabel Evaluate predictions results using torchmetrics classification metrics for multilabel classification problems.

irisml-tasks-torchvision

Adapter tasks for torchvision library.

Task Description
create_torchvision_model Create a torchvision model.
create_torchvision_transform Create transform objects in torchvision library.
create_torchvision_transform_v2 Create torchvision transform v2 object from string expressions.
load_torchvision_dataset Load a dataset from torchvision package.

irisml-tasks-transformers

Adapter tasks for HuggingFace transformers library.

Task Description
cache_transformers_model_on_azure_blob Cache a model from transformers on Azure Blob Storage.
create_transformers_model Create a model using transformers library.
create_transformers_raw_tokenizer Create a Tokenizer using transformers library. Return the tokenizer as-is.
create_transformers_text_model Create a text-generation model using transformers library.
create_transformers_tokenizer Create a Tokenizer using transformers library.

Development

Create a new task

To create a Task, you must define a module that contains a "Task" class. Here is a simple example:

# irisml/tasks/my_custom_task.py
import dataclasses
import irisml.core

class Task(irisml.core.TaskBase):  # The class name must be "Task".
  VERSION = '1.0.0'
  CACHE_ENABLED = True  # (default: True) This is optional.

  @dataclasses.dataclass
  class Inputs:  # You can remove this class if the task doesn't require inputs.
    int_value: int
    float_value: float

  @dataclasses.dataclass
  class Config:  # If there is no configuration, you can remove this class. All fields must be JSON-serializable.
    another_float: float
    child_dataclass: dataclass  # If you'd like to define a nested config, you can define another dataclass.

  @dataclasses.dataclass
  class Outputs:  # Can be removed if the task doesn't have outputs.
    float_value: float = 0  # If dry_run() is not implemented, Outputs fields must have default value or default factory.

  def execute(self, inputs: Inputs) -> Outputs:
    return self.Outputs(inputs.int_value * inputs.float_value * self.config.another_float)

  def dry_run(self, inputs: Inputs) -> Outputs:  # This method is optional.
    return self.Outputs(0)  # Must return immediately without actual processing.

Each Task must define "execute" method. The base class has empty implementation for Inputs, Config, Outputs and dry_run(). For the detail, please see the document for TaskBase class.

Related repositories

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

irisml-0.0.38.tar.gz (43.3 kB view details)

Uploaded Source

Built Distribution

irisml-0.0.38-py3-none-any.whl (37.3 kB view details)

Uploaded Python 3

File details

Details for the file irisml-0.0.38.tar.gz.

File metadata

  • Download URL: irisml-0.0.38.tar.gz
  • Upload date:
  • Size: 43.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for irisml-0.0.38.tar.gz
Algorithm Hash digest
SHA256 7988a6c931718be17f1f88de17fa8442c6d7bce817884da17bd372450a10aeff
MD5 803e4599999a82f08209860ab064c2d2
BLAKE2b-256 2254ce1f50f66e686e85768af503d27c31d5856b87ac19f507f33d9b194408c3

See more details on using hashes here.

File details

Details for the file irisml-0.0.38-py3-none-any.whl.

File metadata

  • Download URL: irisml-0.0.38-py3-none-any.whl
  • Upload date:
  • Size: 37.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for irisml-0.0.38-py3-none-any.whl
Algorithm Hash digest
SHA256 08797e5543f2bb92425bca1bbd119af9fa950c16aec7f188b812ea330c7ba3db
MD5 792c7fe24e6a47d45cffaa5ebcfea880
BLAKE2b-256 d37eecad6e59b7adf876aa39c09ee1f4ad8b37ab8ae290bc316c426bc3019e97

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page