Utility tools to use IrisML on AzureML
Project description
irisml-tasks-azureml
This package is a part of IrisML pipeline. It provides utility scripts and tasks to work with AzureML.
Installation
pip install irisml-tasks-azureml
Available commands
usage: irisml_run_aml [-h] [--env ENV] [--no_cache] [--no_cache_read] [--include_local_tasks [INCLUDE_LOCAL_TASKS]] [--custom_packages CUSTOM_PACKAGES [CUSTOM_PACKAGES ...]]
[--requirement REQUIREMENT] [--extra_index_url EXTRA_INDEX_URL] [--no_wait] [--compute_target COMPUTE_TARGET] [--subscription_id SUBSCRIPTION_ID]
[--resourcegroup RESOURCEGROUP] [--workspace WORKSPACE] [--experiment EXPERIMENT] [--base_docker_image BASE_DOCKER_IMAGE]
[--base_docker_image_registry BASE_DOCKER_IMAGE_REGISTRY] [--no_docker_build_date_label] [--use_sp_on_remote] [--very_verbose]
job_filepath
positional arguments:
job_filepath
options:
-h, --help show this help message and exit
--env ENV, -e ENV
--no_cache
--no_cache_read
--include_local_tasks [INCLUDE_LOCAL_TASKS], -l [INCLUDE_LOCAL_TASKS]
--custom_packages CUSTOM_PACKAGES [CUSTOM_PACKAGES ...], -p CUSTOM_PACKAGES [CUSTOM_PACKAGES ...]
--requirement REQUIREMENT, -r REQUIREMENT
--extra_index_url EXTRA_INDEX_URL
--no_wait
--compute_target COMPUTE_TARGET
--subscription_id SUBSCRIPTION_ID
--resourcegroup RESOURCEGROUP
--workspace WORKSPACE
--experiment EXPERIMENT
--base_docker_image BASE_DOCKER_IMAGE
--base_docker_image_registry BASE_DOCKER_IMAGE_REGISTRY
--no_docker_build_date_label
--use_sp_on_remote, --sp
Use Service Principal id and secret on the AML job.
--very_verbose, -vv
This command submits an experiment to a remote AzureML node.
If --include_local_tasks option is used, python scripts in the current directory or the specified directory will be sent to AzureML and be loaded as custom tasks.
If environment variable AZURE_TENANT_ID, AZURE_CLIENT_ID, and AZURE_CLIENT_SECRET are set, this command will use ServicePrincipalAuthentication. Otherwise, the AzureML's default authentication method will be used.
If --use_sp_on_remote flag is used, the environment variables for service principal authentication will be set to the AML job. Note that those information will be visible to anyone who has read access to the job.
Example
irisml_run_aml irisml/docs/example/mobilenetv2_mnist_training.json -p irisml-tasks-torchvision irisml-tasks-training --compute_target <cluster_name> --subscription_id <subscription_id> --workspace <workspacename>
Tasks
run_azureml_child
Submit a new AzureML job as a child of the current run. Raises an exception if the current environment was not on AzureML.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file irisml_tasks_azureml-1.0.4.tar.gz
.
File metadata
- Download URL: irisml_tasks_azureml-1.0.4.tar.gz
- Upload date:
- Size: 9.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d28cb1d49387742850bb6e802e1513afb1d0f267b5677f94aef0972d47d1a3a3 |
|
MD5 | 20f46bbb6d60eae1bef3a9185e5160d0 |
|
BLAKE2b-256 | d3f2a13c19e78977da75669ecb796dc1f57b6aed2706ec2a5cb7b9a3925de77c |
File details
Details for the file irisml_tasks_azureml-1.0.4-py3-none-any.whl
.
File metadata
- Download URL: irisml_tasks_azureml-1.0.4-py3-none-any.whl
- Upload date:
- Size: 9.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5bf55d96badbcf2444644a15b971a1a8292a213c869db199cd25d0285c18f55b |
|
MD5 | 3671d4df805e5e8939c92593959b31f2 |
|
BLAKE2b-256 | bd775f846fde5790c91eef763880c33d471c25d0b4b6019699cdbeeb2b2a3f07 |