A tool to get symmetry proberties of ab-initio wavefunctions, irreduible representations and more.
Project description
IrRep
This is a code to determine symmetry eigenvalues of electronic states obtained by DFT codes, as well as irreducible representations, wannier charge centers (1D) and many more
also one can get the trace.txt file for Check Topological Mat routine of Bilbao Crystallographic Server.
Help on usage can be obtained by typing
irrep --help
Help is under construction and is far from being complete. If you have interest in the code and not sure how to use it, feel free to contact the author.
Also, have a look at the examples provided.
An example of using:
irrep -Ecut=50 -code=abinit -fWFK=Bi_WFK -refUC=0,-1,1,1,0,-1,-1,-1,-1 -kpoints=11 -IBend=5 -kpnames="GM"
Installation
Install using pip
:
pip install irrep
Currently the code is interfaced VASP, ABINIT and QuantumEspresso, but if interface with other code is needed, please contact te author.
Unit cell transformation
To be able to identify irreducible representations (irreps) from traces of symmetry operations requires saving somewhere the relation between irrep labels and traces. Since traces depend on the choice of the unit cell, defining a conventional or standard unit cell is needed.
At the same time, DFT calculations are usually run in a primitive cell for convenience. Then, IrRep
needs the transformation from the DFT cell to the conventional cell. The user can give the transformation to IrRep
by specifying the CLI arguments -refUC
and -shiftUC
, or let IrRep
calculate automatically the transformation by setting -searchcell
. The possible cases are:
- Let
IrRep
calculate automatically the transformation to the conventional cell:
irrep -searchcell
- Give
IrRep
the tranformation and check that it is the correct transformation to the conventional cell:
irrep -refUC=... -shiftUC=... -searchcell
- Provide
IrRep
with a transformation but don't check if it leads to the conventional cell:
irrep -refUC=... -shiftUC=...
This case is useful to get the traces in a cell that is not neither the DFT nor the conventional cell.
- Calculate the traces only for the DFT cell and forget about transforming to a different unit cell:
irrep
:clipboard: Note: specifying -kpnames
in the CLI activates automatically -searchcell
, as the transformation to the convetional cell is needed to identify irreps.
:clipboard: Note Until v.1.7.1, the default behaviour was to calculate or check the transformation to the conventional cell, so the case 4 above would indicate IrRep
to calculate the transformation to the conventional cell.
How to cite
The code relies on spglib library to determine the symmetry of the crystal and the tables of the characters of irreducible representations, obtained from the Bilbao Crystallographic Server (BCS) If you use this code to determine irreps for a scientific publication, please cite the following articles:
M. Iraola, J. L. Mañes, B. Bradlyn, M. K. Horton, T. Neupert, M. G. Vergniory and S. S. Tsirkin "IrRep: Symmetry eigenvalues and irreducible representations of ab initio band structures", Computer Physics Communications 272, 108226 (2022). https://doi.org/10.1016/j.cpc.2021.108226
L. Elcoro, B. Bradlyn, Z. Wang, M. G. Vergniory, J. Cano, C. Felser, B. A. Bernevig, D. Orobengoa, G. de la Flor and M. I. Aroyo "Double crystallographic groups and their representations on the Bilbao Crystallographic Server" J. of Appl. Cryst. (2017). 50, 1457-1477. doi:10.1107/S1600576717011712
Before releasing this public repository on github on 22th of June 2019, the code is mainly written by:
Stepan S. Tsirkin
University of Zurich
after a fruitful discussion of formalism with Maia G. Vergniory (Donostia International Physics Center/IKERBASQUE, Basque Country, Spain)
I also acknowledge contributions to the code from Mikel Iraola (Donostia International Physics Center, Basque Country, Spain)
Further contributions from other authors may be tracked on GitHub contributors list.
Structure of the package
The files that form the code are organized following a structure that will be described here.
irrep
: directory that contains the files that govern the running of the code.cli.py
: interface to the command line.__readfiles.py
: routines to read data from DFT output files.bandstructure.py
: contains the classBandStructure
, which reads, organizes, treats the data and displays the results.kpoint.py
: contains the classKpoint
, which reads and treats data of a particular k-point and displays results obtained from it.__gvectors.py
: routines for the generation and transformation of plane-waves.__spacegroup.py
: classes to read the crystal structure, deduce the space group and deal with symmetry operations.utility.py
: auxiliary routines, mainly for type conversion.__init__.py
: version number.tests
: directory containing tests for developing purposes.
examples
: directory containing input to run examples with different codes and data that has been published in journals, reviews,... In some examples, DFT outputs may not be included due to their large size.tables
: tables of irreducible representations and python scripts for working with them.__convertTab.py
: to convert tables of irreducible representations to a user friendly format. (Only for developing)__init__.py
: classes to read and organize data from tables of irreducible representations.
INSTALL
: commands for the installation.LICENSE
: declaration of the license under which the code is made available.setup.py
: routines to install the code.uploadpypi.sh
: to upgrade the code in Pypi. (only for owner's use)
Development
To develop on IrRep
, follow these steps:
- Clone the repository to your local computer,
git clone ...
- Ensure you have a modern version of Python installed (3.x+). We recommend 3.6 or higher.
- Create a new development environment. Either use a virtual environment, for example:
or, if you're using anaconda, a new conda environment.python -m venv /path/to/my_irrep_dev_env
conda create --name my_irrep_dev_env
- Activate this virtual environment or conda environment, e.g. by running
source activate /path/to/my_irrep_dev_env/bin/activate
orconda activate my_irrep_dev_env
as appropriate. - Go into the repository directory and run
python setup.py develop
. - To run tests you will also need to run
pip install pytest
and then tests can be run by runningpytest
. Currently, tests will run the examples in theexamples
directory and verify their output against a known output. - Make changes to the code as required. The
irrep
command line tool will also be available inside this environment.
You can verify your development environment by opening a Python interpretor
(e.g. running python
) and running import irrep
and then print(irrep.__file__)
.
This should print the path to your local repository containing irrep.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file irrep-1.11.1.tar.gz
.
File metadata
- Download URL: irrep-1.11.1.tar.gz
- Upload date:
- Size: 75.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 017874a5f0e947bb6da1270d66811bf907ce72fe785dd6a1e9576e3f2dbf6819 |
|
MD5 | 1d72fc5476d8f7d53e8c63c307bcf312 |
|
BLAKE2b-256 | 7dabec672da1b4cfb4e135310b81000caa4e72e26deebf6dbb75a90568ee626c |
File details
Details for the file irrep-1.11.1-py3-none-any.whl
.
File metadata
- Download URL: irrep-1.11.1-py3-none-any.whl
- Upload date:
- Size: 76.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0c5b21a21e0a13bb35598418c630da44e6acaf8c8a930803a621fd38112662a8 |
|
MD5 | 9c4548a778b301e1315bba8bec5f75d7 |
|
BLAKE2b-256 | ed576490e0ad0823c13a7d6102c4dad187409b6f1a24f02d4aef7f88ccc1f006 |