Skip to main content

Implicit feedback-based recommender system pack

Project description

irspack

Python pypi GitHub license Build Read the Docs codecov

Docs

irspack is a Python package to train, evaluate, and optimize recommender systems based on implicit feedback.

There are already great packages for this purpose like

However, I decided to implement my own one to

  • Use optuna for more efficient parameter search. In particular, if an early stopping scheme is available, optuna can prune unpromising trial based on the intermediate validation score, which drastically reduces overall running time for tuning.
  • Use multi-threaded implementations wherever possible. Currently, several important algorithms (KNN, iALS, SLIM) and performance evaluators are parallelized using C++ thread.

Installation & Optional Dependencies

There are binaries for Linux, MacOS, and Windows with python>=3.6 with x86 architectures. You can install them via

pip install irspack

The binaries have been compiled to use AVX instruction. If you want to use AVX2/AVX512 or your environment does not support AVX (like Rosetta 2 on Apple M1), install it from source like

CFLAGS="-march=native" pip install git+https://github.com/tohtsky/irspack.git

In that case, you must have a decent version of C++ compiler (with C++11 support). If it doesn't work, feel free to make an issue!

Optional Dependencies

I have also prepared a wrapper class (BPRFMRecommender) to train/optimize BPR/warp loss Matrix factorization implemented in lightfm. To use it you have to install lightfm separately, e.g. by

pip install lightfm

If you want to use Mult-VAE and CB2CF features in cold-start scenarios, you'll need the following additional (pip-installable) packages:

Basic Usage

Step 1. Train a recommender

We first represent the user/item interaction as a scipy.sparse matrix. Then we can feed it into our Recommender classes:

import numpy as np
import scipy.sparse as sps
from irspack.recommenders import P3alphaRecommender
from irspack.dataset.movielens import MovieLens100KDataManager

df = MovieLens100KDataManager().read_interaction()
unique_user_id, user_index = np.unique(df.userId, return_inverse=True)
unique_movie_id, movie_index = np.unique(df.movieId, return_inverse=True)
X_interaction = sps.csr_matrix(
  (np.ones(df.shape[0]), (user_index, movie_index))
)

recommender = P3alphaRecommender(X_interaction)
recommender.learn()

# for user 0 (whose userId is unique_user_id[0]),
# compute the masked score (i.e., already seen items have the score of negative infinity)
# of items.
recommender.get_score_remove_seen([0])

Step 2. Evaluate on a validation set

We have to split the dataset to train and validation sets

from irspack.split import rowwise_train_test_split
from irspack.evaluator import Evaluator

# Random split
X_train, X_val = rowwise_train_test_split(
    X_interaction, test_ratio=0.2, random_seed=0
)

evaluator = Evaluator(ground_truth=X_val)

recommender = P3alphaRecommender(X_train)
recommender.learn()
evaluator.get_score(recommender)

This will print something like

{
  'appeared_item': 106.0,
  'entropy': 3.840445116672292,
  'gini_index': 0.9794929280523742,
  'hit': 0.8854718981972428,
  'map': 0.11283343078231302,
  'n_items': 1682.0,
  'ndcg': 0.3401244303579389,
  'precision': 0.27560975609756017,
  'recall': 0.19399215770339678,
  'total_user': 943.0,
  'valid_user': 943.0
}

Step 3. Optimize the Hyperparameter

Now that we can evaluate the recommenders' performance against the validation set, we can use optuna-backed hyperparameter optimizer.

from irspack.optimizers import P3alphaOptimizer

optimizer = P3alphaOptimizer(X_train, evaluator)
best_params, trial_dfs  = optimizer.optimize(n_trials=20)

# maximal ndcg around 0.38 ~ 0.39
trial_dfs["ndcg@10"].max()

Of course, we have to hold-out another interaction set for test, and measure the performance of tuned recommender against the test set. See examples/ for more complete examples.

TODOs

  • more benchmark dataset

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

irspack-0.1.13.tar.gz (140.0 kB view details)

Uploaded Source

Built Distributions

irspack-0.1.13-cp39-cp39-win_amd64.whl (503.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

irspack-0.1.13-cp39-cp39-win32.whl (455.0 kB view details)

Uploaded CPython 3.9 Windows x86

irspack-0.1.13-cp39-cp39-manylinux2010_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

irspack-0.1.13-cp39-cp39-manylinux2010_i686.whl (9.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

irspack-0.1.13-cp39-cp39-macosx_10_9_x86_64.whl (629.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

irspack-0.1.13-cp38-cp38-win_amd64.whl (507.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

irspack-0.1.13-cp38-cp38-win32.whl (454.5 kB view details)

Uploaded CPython 3.8 Windows x86

irspack-0.1.13-cp38-cp38-manylinux2010_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

irspack-0.1.13-cp38-cp38-manylinux2010_i686.whl (9.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

irspack-0.1.13-cp38-cp38-macosx_10_9_x86_64.whl (628.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

irspack-0.1.13-cp37-cp37m-win_amd64.whl (510.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

irspack-0.1.13-cp37-cp37m-win32.whl (457.8 kB view details)

Uploaded CPython 3.7m Windows x86

irspack-0.1.13-cp37-cp37m-manylinux2010_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

irspack-0.1.13-cp37-cp37m-manylinux2010_i686.whl (9.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

irspack-0.1.13-cp37-cp37m-macosx_10_9_x86_64.whl (624.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

irspack-0.1.13-cp36-cp36m-win_amd64.whl (510.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

irspack-0.1.13-cp36-cp36m-win32.whl (457.7 kB view details)

Uploaded CPython 3.6m Windows x86

irspack-0.1.13-cp36-cp36m-manylinux2010_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

irspack-0.1.13-cp36-cp36m-manylinux2010_i686.whl (9.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

irspack-0.1.13-cp36-cp36m-macosx_10_9_x86_64.whl (624.0 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file irspack-0.1.13.tar.gz.

File metadata

  • Download URL: irspack-0.1.13.tar.gz
  • Upload date:
  • Size: 140.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13.tar.gz
Algorithm Hash digest
SHA256 9681bc96e1ae9e8ed11e7060a49794c622a8c5597c687bdc9476dab77e6ca734
MD5 f98c3423435d7aed3cf296cae07379d4
BLAKE2b-256 60d144ca43f873d3bd41180e816c4bd2cf17ccb62fef04979cd862ee7a4d7bf5

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.13-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 503.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 923d16bc989c1c583f2c07dfbf5d553298e29b6ba7b229d111ce08d68bbfee65
MD5 8304c0371185af9eff5f6ea58b53628a
BLAKE2b-256 8df3ce6dd118290889a35de0fb019c0ea80cf315e4cf4d6a2fb883b39e98f72a

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp39-cp39-win32.whl.

File metadata

  • Download URL: irspack-0.1.13-cp39-cp39-win32.whl
  • Upload date:
  • Size: 455.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b67d70660d8094e2668d95e81fb56d57d588e2ad50ae3b0976d13d2d4e588d6b
MD5 67490724827dd6d0e14187c965a63694
BLAKE2b-256 8fe60512e8fbd887b8d546e49d537dc92f9f99b988e10552e7d8cb5e4fd488eb

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.13-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e3e86d53290ef2516a65448e710645f55424b1128321eba095362de4f9042ea6
MD5 f0d27aceb8957957a7b79f5c63667755
BLAKE2b-256 3f1cc7e76579bf997d67a231e9ab611e19d01188ecc666d3e1bc9740a8725a10

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.13-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3692311248ff6a24633b32bf4a3590709306a7c26e2e13744666110816357d50
MD5 f8e022f9c8ac622f9744c7a6a42322ea
BLAKE2b-256 9115f82059ff03ed038895f94439ea3f49444c140ec04547106d8c251dac77f4

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.13-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 629.5 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ffcd4fdbd66ffc1ce8470f2ea9198b2d4f2ce3e20f38ad9ff9967cad689ff6bb
MD5 eb1b39566a9cfdb1aba5373bc385545f
BLAKE2b-256 4e75d1eb598b286262dbebf32631f98c9f671ebaff5c02018ffe1f0f480dfe48

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.13-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 507.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 09019cd44046bfb8137d097c6fa4a5a918918d40e94dd9a16fb9db1b8c967a70
MD5 a39f32cd438774f72c665604b1fff258
BLAKE2b-256 c29bdf12da8688761206c39fbf94359b84cee4ea9eb42a855b1f3af03af78d2b

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp38-cp38-win32.whl.

File metadata

  • Download URL: irspack-0.1.13-cp38-cp38-win32.whl
  • Upload date:
  • Size: 454.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a37bd099d8d6c79a16766678d74b6b5ba7eff2111a7f3c58d6df8a5bb7a739f7
MD5 0af819fb505b7a8f37c25457e66a8562
BLAKE2b-256 26e09b635da04581a85fafc46228ceba6f56dbe1ffe5c788058bd97ea6def703

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.13-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d34a0e4b1b6a27e3933a8dfc0784d90cd090a6550c310953313b0b70afb1056c
MD5 247093f79547cd78aa745f5e099dbaa7
BLAKE2b-256 98fde270b78e62632a3e6e9b7fd4b553c8db70a15bbe82f8dee3396dbd0eb233

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.13-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a3dde5f0c51c47fccce1bdc1e7c20e4e99bb172a85e9e02768b18ac28e83493f
MD5 c794937314f71c6510dda7a351ded8b3
BLAKE2b-256 d19d92ed72a0af24654e12fb84cf35150f49114616e0759f6af02da22ad7534c

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.13-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 628.7 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 93de3b1a76dfacd86dd91508b01e36f46b8fc169d28f498e228573fa8108bb3e
MD5 1615584621643fa4ed327bc33a8f442a
BLAKE2b-256 7b9ef3afc58b4c87c0267e89a6424d9ff19673bfc43edd5726eae170957ba185

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.13-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 510.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 29e7b258309f8055fba7f1d1b99ff9e69c4f089ca947cd3ee02c07ac1d7a7f17
MD5 caf961283aa096252763be03ead9c9e6
BLAKE2b-256 3778bedfb299700bd5518f420defc2b356377b4cae44cac174c713056c0f3938

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp37-cp37m-win32.whl.

File metadata

  • Download URL: irspack-0.1.13-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 457.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 f5e859db6959ddb29f2a9351875f4087a88d2b9494fbdb2b6f882e92d9d57cba
MD5 53789c3d0db1eb6c8548419d0601bbcf
BLAKE2b-256 01ce431e38cd5613814239773e53093c02678239656f0908061058f287a9585d

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.13-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dfa12808ca271441247cdc9cd6d4b4dd759f5eb2c63c3c554b291e0840fa0b9e
MD5 96c14867b35216bf848dbe0c6d7ef8e5
BLAKE2b-256 57b2ee61252c99082a9afd2f903bee32803da1243d32b78c73ed4be74770c6ba

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.13-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 88c097cf75e8520f196c66c510ff3c778f5b47329909c731d9685eeba23e9a8c
MD5 49d850440e76fcdb17882249941d2762
BLAKE2b-256 de6988df9c8b45f45cb8ef62b4a1bc3f72db82314cc82032be32226ba47c001e

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.13-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 624.1 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5dcdf4ffc598fa1e5bb95e1cae7a4038707c64b65376a61b948ba958326e68a1
MD5 00ad8eea96e5fbec19ec9509d28dc655
BLAKE2b-256 0f11097125941fe787a90fb4db9c8c10a339df86c3788bb69f0875486e0f56db

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.13-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 510.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 b27d8e422be968d07d934400a25785f8aa9a8140be425d61d568eddaca0ff1cf
MD5 0c7c31147302fba07ebc50fdcf7627bc
BLAKE2b-256 b3d0411c5b518d804d4434806105350131a7a9dfca1eaf87a1bdcdf693a8f099

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp36-cp36m-win32.whl.

File metadata

  • Download URL: irspack-0.1.13-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 457.7 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 d47a10bf5b60c3d6fcd949677f2031055a1be75bb9ab797e4030f60fff1b3f1c
MD5 7b7beda24cbef14f193e20023afa32e6
BLAKE2b-256 7bedb3bc14af972b9d5fb93cee58fbfafd8086c085f0f94c6b24df230193c55a

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.13-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8f7bf629fe797386eed93090cf85f17a52586f198af8f7e399866ac2fecb5aac
MD5 3e84d4ef7bffcccadaa070d2d18c0f5f
BLAKE2b-256 d844ba24a05b909cbe57d7acca6954dddf44335322a21e1cd3a4ae644ac3a9ff

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.13-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b540809524e8fb3b874fcc773c3589e31b9d648d6cd5dd236706c4516ae8c755
MD5 c6abbed5482d9320b69750bdc8264640
BLAKE2b-256 351b56456b541f905e75ef4ecd7de2e8ea81334af716de0b6069e7998c6e4bf0

See more details on using hashes here.

File details

Details for the file irspack-0.1.13-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.13-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 624.0 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for irspack-0.1.13-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 092dac131f771f0fad32d85abb6e0fc5b5fdcbf5e5d844755b4fc44c799a2226
MD5 98ffa828580ecaa4953dcd376fd0e4a2
BLAKE2b-256 d5750d0b5e0a494b8855ee7e7a5854b0553c119264f7d7671fb4fb8fbc81dd44

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page