Skip to main content

Implicit feedback-based recommender system pack

Project description

irspack

Python pypi GitHub license Build Read the Docs codecov

Docs

irspack is a Python package to train, evaluate, and optimize recommender systems based on implicit feedback.

There are already great packages for this purpose like

However, I decided to implement my own one to

  • Use optuna for more efficient parameter search. In particular, if an early stopping scheme is available, optuna can prune unpromising trial based on the intermediate validation score, which drastically reduces overall running time for tuning.
  • Use multi-threaded implementations wherever possible. Currently, several important algorithms (KNN, iALS, SLIM) and performance evaluators are parallelized using C++ thread.

Installation & Optional Dependencies

There are binaries for Linux, MacOS, and Windows with python>=3.6 with x86 architectures. You can install them via

pip install irspack

The binaries have been compiled to use AVX instruction. If you want to use AVX2/AVX512 or your environment does not support AVX (like Rosetta 2 on Apple M1), install it from source like

CFLAGS="-march=native" pip install git+https://github.com/tohtsky/irspack.git

In that case, you must have a decent version of C++ compiler (with C++11 support). If it doesn't work, feel free to make an issue!

Optional Dependencies

I have also prepared a wrapper class (BPRFMRecommender) to train/optimize BPR/warp loss Matrix factorization implemented in lightfm. To use it you have to install lightfm separately, e.g. by

pip install lightfm

If you want to use Mult-VAE and CB2CF features in cold-start scenarios, you'll need the following additional (pip-installable) packages:

Basic Usage

Step 1. Train a recommender

We first represent the user/item interaction as a scipy.sparse matrix. Then we can feed it into our Recommender classes:

import numpy as np
import scipy.sparse as sps
from irspack.recommenders import P3alphaRecommender
from irspack.dataset.movielens import MovieLens100KDataManager

df = MovieLens100KDataManager().read_interaction()
unique_user_id, user_index = np.unique(df.userId, return_inverse=True)
unique_movie_id, movie_index = np.unique(df.movieId, return_inverse=True)
X_interaction = sps.csr_matrix(
  (np.ones(df.shape[0]), (user_index, movie_index))
)

recommender = P3alphaRecommender(X_interaction)
recommender.learn()

# for user 0 (whose userId is unique_user_id[0]),
# compute the masked score (i.e., already seen items have the score of negative infinity)
# of items.
recommender.get_score_remove_seen([0])

Step 2. Evaluate on a validation set

We have to split the dataset to train and validation sets

from irspack.split import rowwise_train_test_split
from irspack.evaluator import Evaluator

# Random split
X_train, X_val = rowwise_train_test_split(
    X_interaction, test_ratio=0.2, random_seed=0
)

evaluator = Evaluator(ground_truth=X_val)

recommender = P3alphaRecommender(X_train)
recommender.learn()
evaluator.get_score(recommender)

This will print something like

{
  'appeared_item': 106.0,
  'entropy': 3.840445116672292,
  'gini_index': 0.9794929280523742,
  'hit': 0.8854718981972428,
  'map': 0.11283343078231302,
  'n_items': 1682.0,
  'ndcg': 0.3401244303579389,
  'precision': 0.27560975609756017,
  'recall': 0.19399215770339678,
  'total_user': 943.0,
  'valid_user': 943.0
}

Step 3. Optimize the Hyperparameter

Now that we can evaluate the recommenders' performance against the validation set, we can use optuna-backed hyperparameter optimizer.

from irspack.optimizers import P3alphaOptimizer

optimizer = P3alphaOptimizer(X_train, evaluator)
best_params, trial_dfs  = optimizer.optimize(n_trials=20)

# maximal ndcg around 0.38 ~ 0.39
trial_dfs["ndcg@10"].max()

Of course, we have to hold-out another interaction set for test, and measure the performance of tuned recommender against the test set. See examples/ for more complete examples.

TODOs

  • more benchmark dataset

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

irspack-0.1.18.tar.gz (146.0 kB view details)

Uploaded Source

Built Distributions

irspack-0.1.18-cp39-cp39-win_amd64.whl (532.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

irspack-0.1.18-cp39-cp39-win32.whl (477.1 kB view details)

Uploaded CPython 3.9 Windows x86

irspack-0.1.18-cp39-cp39-manylinux2010_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

irspack-0.1.18-cp39-cp39-manylinux2010_i686.whl (9.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

irspack-0.1.18-cp39-cp39-macosx_10_9_x86_64.whl (651.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

irspack-0.1.18-cp38-cp38-win_amd64.whl (537.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

irspack-0.1.18-cp38-cp38-win32.whl (476.9 kB view details)

Uploaded CPython 3.8 Windows x86

irspack-0.1.18-cp38-cp38-manylinux2010_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

irspack-0.1.18-cp38-cp38-manylinux2010_i686.whl (9.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

irspack-0.1.18-cp38-cp38-macosx_10_9_x86_64.whl (650.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

irspack-0.1.18-cp37-cp37m-win_amd64.whl (539.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

irspack-0.1.18-cp37-cp37m-win32.whl (480.3 kB view details)

Uploaded CPython 3.7m Windows x86

irspack-0.1.18-cp37-cp37m-manylinux2010_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

irspack-0.1.18-cp37-cp37m-manylinux2010_i686.whl (9.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

irspack-0.1.18-cp37-cp37m-macosx_10_9_x86_64.whl (645.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

irspack-0.1.18-cp36-cp36m-win_amd64.whl (538.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

irspack-0.1.18-cp36-cp36m-win32.whl (480.1 kB view details)

Uploaded CPython 3.6m Windows x86

irspack-0.1.18-cp36-cp36m-manylinux2010_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

irspack-0.1.18-cp36-cp36m-manylinux2010_i686.whl (9.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

irspack-0.1.18-cp36-cp36m-macosx_10_9_x86_64.whl (645.1 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file irspack-0.1.18.tar.gz.

File metadata

  • Download URL: irspack-0.1.18.tar.gz
  • Upload date:
  • Size: 146.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18.tar.gz
Algorithm Hash digest
SHA256 d8915a543df53dd3eaee90dbeea59e8c19635acbb46317f7926d82136a01b261
MD5 360d80d5d4caa675dccf81ba322c3763
BLAKE2b-256 cadc9b615a048ddc6a01c6d2910e77efbea8dbcff1924138141ec67ca768d079

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.18-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 532.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 43d0102ac523f4e91f537e398fc0c3d803a9e468f558dfbedf2ccfa7d297984d
MD5 233b17195e5373245e71586ea302c7d4
BLAKE2b-256 6018dc3640f0e4c621ffccf652d1d51e04488a1667e73ab9159b212a7d272eca

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp39-cp39-win32.whl.

File metadata

  • Download URL: irspack-0.1.18-cp39-cp39-win32.whl
  • Upload date:
  • Size: 477.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9715daf37190d0b50e1503de417f57a94bebe5e6e3a27475527f89cc9cb74c44
MD5 30d399aa7550cf6c0ac51c45e3c6a077
BLAKE2b-256 4fe14d968e36ee58d5f9bbc337949f4abe4e2a7422fcef56ffbfaf9b2e661205

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.18-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 74601e0db550bb28a83fa9e20fe856d31b4237215974cb90d9a8f0f3bb1293b1
MD5 08ad98f6fcbb560c178f99e98281b15d
BLAKE2b-256 49e7b3ea891978f8ecbd4c2dbb9c657a1dc70dac1cb2d390bc82154292eed357

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.18-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 76324262be937e10e60b28e6c1f10ad77aab78a1432001abb8f66836f9b11079
MD5 50c44bfcacecbc8bf21856ddefe07dcb
BLAKE2b-256 ad461d263669f2d774918b27264a966b24ff1dd61a0b6782a8af5651046b89c3

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.18-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 651.2 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9ddc227b3a5530240d6ccf5e1fb91fed5972daec7de77fed95020ca31d12e293
MD5 a31d5004e4c35a2683916e5a7c414bec
BLAKE2b-256 fdc9c7d6a75d4586b0a52d6c478fffe393c74aa85a6b2cd1526294628edc1270

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.18-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 537.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ef31b66dc3a9537b3351d18b9f4ac203cada69752e5c99aa1ea19fb0f095e475
MD5 5203c19615bd34f684e2dde3db5cf7ea
BLAKE2b-256 9ef44ddcc727da6543b74021931f42be08f6fbb67a0708c1b67becf2d1693923

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp38-cp38-win32.whl.

File metadata

  • Download URL: irspack-0.1.18-cp38-cp38-win32.whl
  • Upload date:
  • Size: 476.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a072ca282245ddf2bf0aabc60f97d704a728b8c4148b9a4a35349da65ddf43a0
MD5 c1c3ada3ad82082be8015c896e6344ab
BLAKE2b-256 3d91a3753b3718ddd45d7284c34a6569fb2b07465c666555c83274596b3d037d

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.18-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c4acf5ad95e69ec39afd71dc91178fe488e8d12d4b2968212ef02327e203962d
MD5 ac33461acd3447c583ff02178cf18fca
BLAKE2b-256 90e867defd0d0f3405a1cd162ab8e0271f5fe014125752943034595a1602565a

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.18-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 61dd9c99d76eda48f4d7ffcd95e7ddf1d8f3c11b35d6eb5d3341d6fa7b2918b8
MD5 b6af777a5658d4e769808ca80c357556
BLAKE2b-256 0ee6026c81edafb8af7693f0cab285939cce7f7d934cfc362dadd8456323b0ee

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.18-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 650.2 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 211bc833c16305869c005b5ac3b66b42055b9d241165cab8b3dfb386a98ce613
MD5 7a1d1553a5e1cfa3c2d1da0f68514e36
BLAKE2b-256 cbfd28ac519a8e387f6db9715d19e026d006ac405e064f9b384fc7a9212d28b8

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.18-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 539.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0ab2540be01cfbe424d883b8a4ff30f0bbc58d40cbac6cb8013279312f7f7c81
MD5 a7391eb4d49bbc5c3ad3e081762d870c
BLAKE2b-256 ab76be7c41706a7f93a156bd01f03687e2ed361ce2df335ca803d5c1d4b28df9

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp37-cp37m-win32.whl.

File metadata

  • Download URL: irspack-0.1.18-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 480.3 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 037caa4e1c8aedc367ad5ef0f3470b515e9c4c2bf47824eb4cdde4a0dbf90c48
MD5 b6ee7bd5a3331968ba49b2b6443f430c
BLAKE2b-256 b1748f61d8343611a56409dab3ae0d4b712530a9951c0db3266a9c640bf82a47

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.18-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7d2d877c1d5e805bdc0a257914e2e8343b6201b199abfcb5717cb21645ce82d1
MD5 c38c5b4a7d88b0a480d1d6f30b8c3645
BLAKE2b-256 ed9374c3ebd0adefd1aa48755472da1b5428b9acc17e6c1b0bbebdbbd7a7669a

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.18-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4fa22eb146dd5c74058e2fe7f52723941aebd555aedc970fd4d3b19eb3aa6610
MD5 5170cd5f4ecc742c6d73896e281ed7c1
BLAKE2b-256 23c78e497383603eef90ff28ad9df506751892d4ba4d545534822c45d307ed82

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.18-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 645.1 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 93fbf2a4a40509e21ff014500eae8d756a1ebb1885c1bffe80a9fc69e5ce9626
MD5 6330d7f965a5e7cfd922c0527018a1aa
BLAKE2b-256 db3cb2aeda9edbb0dbcd400ecad491635e0fa99cba37a0bbb1d08ac10b0e9c57

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.18-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 538.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 116abac19be6b087bdb681ca351d99796c9390a24c980a974cfb2c1c6e7d91e7
MD5 680e8cb8374bfa932039e9a555077f62
BLAKE2b-256 25c865b979e52f9d7f9838e475a3639f70a46a53a87ecf5b0639e5fdfaf11ee1

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp36-cp36m-win32.whl.

File metadata

  • Download URL: irspack-0.1.18-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 480.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 e2c8dc9690ee45803ee715ab56f13195030cf561a14a9b3be576f118e5fd01ec
MD5 47035893b329852bec5edfddce3b3800
BLAKE2b-256 18fa2c31bccb626a7d327166bec2f16201749521c99d628d3578ef6c467a3682

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.18-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.8 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ba14cf01a57beee2870177fdb8d116e71c5a632cfb7c461921d9087355cfe2fb
MD5 ce1a200918e9edebe13b7067bdb0bc57
BLAKE2b-256 65b3b6b78891ca66b7f20fddc02f0a616e02ac52193bf839799ee2b7828a385d

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.18-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 14a524339f2d21b1e83b65dea551c0bf3683fe64da4314d74afd443dcf3e231d
MD5 82529245df85fd5498256b0ae562b7fe
BLAKE2b-256 114f42c26e23c3c4d13b3491083c1537658992daaacc1a827ffe71798bf45754

See more details on using hashes here.

File details

Details for the file irspack-0.1.18-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.18-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 645.1 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for irspack-0.1.18-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 918100b9ff2194f95159eee893a0d08169e37649083c414765938cecc1619094
MD5 afdc3a695d9d7382b4c4458ebdad02f8
BLAKE2b-256 debee0064bc48c742944aab7a73f564a3460a7b64858460ce1c7cb2446e1fa82

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page