Skip to main content

Implicit feedback-based recommender system pack

Project description

irspack

Python pypi GitHub license Build Read the Docs codecov

Docs

irspack is a Python package to train, evaluate, and optimize recommender systems based on implicit feedback.

There are already great packages for this purpose like

However, I decided to implement my own one to

  • Use optuna for more efficient parameter search. In particular, if an early stopping scheme is available, optuna can prune unpromising trial based on the intermediate validation score, which drastically reduces overall running time for tuning.
  • Use multi-threaded implementations wherever possible. Currently, several important algorithms (KNN, iALS, SLIM) and performance evaluators are parallelized using C++ thread.

Installation & Optional Dependencies

There are binaries for Linux, MacOS, and Windows with python>=3.6 with x86 architectures. You can install them via

pip install irspack

The binaries have been compiled to use AVX instruction. If you want to use AVX2/AVX512 or your environment does not support AVX (like Rosetta 2 on Apple M1), install it from source like

CFLAGS="-march=native" pip install git+https://github.com/tohtsky/irspack.git

In that case, you must have a decent version of C++ compiler (with C++11 support). If it doesn't work, feel free to make an issue!

Optional Dependencies

I have also prepared a wrapper class (BPRFMRecommender) to train/optimize BPR/warp loss Matrix factorization implemented in lightfm. To use it you have to install lightfm separately, e.g. by

pip install lightfm

If you want to use Mult-VAE and CB2CF features in cold-start scenarios, you'll need the following additional (pip-installable) packages:

Basic Usage

Step 1. Train a recommender

We first represent the user/item interaction as a scipy.sparse matrix. Then we can feed it into our Recommender classes:

import numpy as np
import scipy.sparse as sps
from irspack.recommenders import P3alphaRecommender
from irspack.dataset.movielens import MovieLens100KDataManager

df = MovieLens100KDataManager().read_interaction()
unique_user_id, user_index = np.unique(df.userId, return_inverse=True)
unique_movie_id, movie_index = np.unique(df.movieId, return_inverse=True)
X_interaction = sps.csr_matrix(
  (np.ones(df.shape[0]), (user_index, movie_index))
)

recommender = P3alphaRecommender(X_interaction)
recommender.learn()

# for user 0 (whose userId is unique_user_id[0]),
# compute the masked score (i.e., already seen items have the score of negative infinity)
# of items.
recommender.get_score_remove_seen([0])

Step 2. Evaluate on a validation set

We have to split the dataset to train and validation sets

from irspack.split import rowwise_train_test_split
from irspack.evaluator import Evaluator

# Random split
X_train, X_val = rowwise_train_test_split(
    X_interaction, test_ratio=0.2, random_seed=0
)

evaluator = Evaluator(ground_truth=X_val)

recommender = P3alphaRecommender(X_train)
recommender.learn()
evaluator.get_score(recommender)

This will print something like

{
  'appeared_item': 106.0,
  'entropy': 3.840445116672292,
  'gini_index': 0.9794929280523742,
  'hit': 0.8854718981972428,
  'map': 0.11283343078231302,
  'n_items': 1682.0,
  'ndcg': 0.3401244303579389,
  'precision': 0.27560975609756017,
  'recall': 0.19399215770339678,
  'total_user': 943.0,
  'valid_user': 943.0
}

Step 3. Optimize the Hyperparameter

Now that we can evaluate the recommenders' performance against the validation set, we can use optuna-backed hyperparameter optimizer.

from irspack.optimizers import P3alphaOptimizer

optimizer = P3alphaOptimizer(X_train, evaluator)
best_params, trial_dfs  = optimizer.optimize(n_trials=20)

# maximal ndcg around 0.38 ~ 0.39
trial_dfs["ndcg@10"].max()

Of course, we have to hold-out another interaction set for test, and measure the performance of tuned recommender against the test set. See examples/ for more complete examples.

TODOs

  • more benchmark dataset

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

irspack-0.1.19.tar.gz (146.5 kB view details)

Uploaded Source

Built Distributions

irspack-0.1.19-cp39-cp39-win_amd64.whl (546.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

irspack-0.1.19-cp39-cp39-win32.whl (489.2 kB view details)

Uploaded CPython 3.9 Windows x86

irspack-0.1.19-cp39-cp39-manylinux2010_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

irspack-0.1.19-cp39-cp39-manylinux2010_i686.whl (9.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

irspack-0.1.19-cp39-cp39-macosx_10_9_x86_64.whl (666.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

irspack-0.1.19-cp38-cp38-win_amd64.whl (550.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

irspack-0.1.19-cp38-cp38-win32.whl (488.9 kB view details)

Uploaded CPython 3.8 Windows x86

irspack-0.1.19-cp38-cp38-manylinux2010_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

irspack-0.1.19-cp38-cp38-manylinux2010_i686.whl (9.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

irspack-0.1.19-cp38-cp38-macosx_10_9_x86_64.whl (665.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

irspack-0.1.19-cp37-cp37m-win_amd64.whl (552.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

irspack-0.1.19-cp37-cp37m-win32.whl (491.2 kB view details)

Uploaded CPython 3.7m Windows x86

irspack-0.1.19-cp37-cp37m-manylinux2010_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

irspack-0.1.19-cp37-cp37m-manylinux2010_i686.whl (9.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

irspack-0.1.19-cp37-cp37m-macosx_10_9_x86_64.whl (661.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

irspack-0.1.19-cp36-cp36m-win_amd64.whl (552.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

irspack-0.1.19-cp36-cp36m-win32.whl (491.1 kB view details)

Uploaded CPython 3.6m Windows x86

irspack-0.1.19-cp36-cp36m-manylinux2010_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

irspack-0.1.19-cp36-cp36m-manylinux2010_i686.whl (9.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

irspack-0.1.19-cp36-cp36m-macosx_10_9_x86_64.whl (660.9 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file irspack-0.1.19.tar.gz.

File metadata

  • Download URL: irspack-0.1.19.tar.gz
  • Upload date:
  • Size: 146.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19.tar.gz
Algorithm Hash digest
SHA256 d9c5f40e1aa01043850bca516c2e6df8a5fb10b0f0aad6609c248a88c985fa3e
MD5 c28af077c0c533d8d7595338cd2cb990
BLAKE2b-256 1d29ca6c368ecb169ed4d6a2da17ac425d795134565ac0cf981a2bf910dd65a6

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.19-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 546.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a9479ae4b71d9cb43be3188033ba140590b9993404bf56ce1dfbac0edd005c04
MD5 a167280c8fb146066bd0d1f4037bff6f
BLAKE2b-256 a6db90f757e287d99f7db91d93db7d4efd08039a6058fea6284c72bb6ffb6670

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp39-cp39-win32.whl.

File metadata

  • Download URL: irspack-0.1.19-cp39-cp39-win32.whl
  • Upload date:
  • Size: 489.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 647dafbc28d2b6599d645899407ecbc39d4d4341b9c2744675a529ae1116f30b
MD5 da5464b1aabecd23473092dc05de6179
BLAKE2b-256 97e4a4f8629de225f42742be531891acdff41419fdb1c1d08cde64af83fcaa69

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.19-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.8 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7aa32b97a4d0933f1b742f1630b3c4b09d7dd4d3c83e765df36290033be46083
MD5 63839738ac91960fffe6a68652e4a01d
BLAKE2b-256 c24eccb6ec22aafd70617388e89e8349c2ea8e8068d0a32943a683f55e593549

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.19-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 401f85b0722ac9fce7ca000a90e8f75ec1e1ced9fe8b62303cff0c1aaa9aabdf
MD5 5f8d045e853e10a7426a20c879cab3dc
BLAKE2b-256 64c0e3b6db52059985d7e36f34bab9f09400d9c4004b0fafb16f1b6dbead2722

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.19-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 666.7 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fd0b31c1e8ce158995ec78cba62631f8e8e8ae181dfd3877e37c58981919435e
MD5 12e6eca1529d2493fb2f10e8af2f03c1
BLAKE2b-256 1368958d421809b57c40f6b43f5e64a3b2de631e1e29d1adb514ca5cc32be869

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.19-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 550.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6f9dbad89738128ebc31515e6bfd12affd9e032c56c99fefad6868a97e4ffe89
MD5 ef904486034395390b2e3175d02e893d
BLAKE2b-256 f33f5dcae0f6e290f80a83f26b4f738acdb9a79cec13cf81279a6f4dd75a58f7

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp38-cp38-win32.whl.

File metadata

  • Download URL: irspack-0.1.19-cp38-cp38-win32.whl
  • Upload date:
  • Size: 488.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 857ba497bcf14bf9a723a4c1c524e2152afdc052456185abf3169ae54f1bdf10
MD5 96c2ccbad46965468429b3c5db65d48f
BLAKE2b-256 e2f8d5e25247e417ed36f189c837109f5f36b0bb1534d3d7073919042c2c0fff

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.19-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 14baf328c90e83dadba7c5c6d018029fa2ee8e7f1d07cbb9d3cf012337672e41
MD5 44a90fb3dcdac155fa8d207217eaadf0
BLAKE2b-256 2bad20a2adeb0699ee90abd0ae66eb73f502dfb231f2155f3c675b5c1da5815e

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.19-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 254c3c5807216d87913f0ed9c7a3c0be2b8f2b5df057d5e1efb336537cebfe0e
MD5 e30093d37122fd2cf35cbf73d5d9817a
BLAKE2b-256 62e89508fa799e3f35bbd06302bc3f787938f57c1779594e775d008f85572eee

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.19-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 665.9 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 402c987ebb988f16e21b3137c094dbddf6165e0b3ee5b254bb83d1ab108cb0c5
MD5 97c576ff52a03e47ce77b273f7fa5806
BLAKE2b-256 509040663926d7bbe09d9fc29745e76608ec8e3a8184e75b4daea897bdee2b7f

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.19-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 552.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 78bf4c58c11840505c0424efe38495266c9c02a996128228bbc76c4e5fffbc7e
MD5 fa1d2c92cab5b3908fba9a041b877560
BLAKE2b-256 d7d38dbf88914f845b49ec21bb21eff4a7566f9492930e3fa29e5525972bfc7f

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp37-cp37m-win32.whl.

File metadata

  • Download URL: irspack-0.1.19-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 491.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3c2060edebe12cd0e5a4058b297a9f2cb1a70a10d0b85029e8c52cad65eca771
MD5 b9647a1f82d8f9fb5068aeed5ddeb768
BLAKE2b-256 7e25a51782f6bf88a5dba9b499fb676363007510011a5c9b4d92c8bc0767430f

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.19-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 57a431ef1eb37b1650430aaf30ddef30fa03aa33586b311122d58ccf1eeac44f
MD5 eafd2dcc0d210f6f5088adc765521014
BLAKE2b-256 abee1279523c0f6843a7e6b9df5d602d4608f49b5b790c362e0695d494fe09ac

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.19-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 0f01264bf77e47757d61b129f2da4aba9e0107265e4cc11ac570cd18e0b0436a
MD5 3f4f7e7c2f0db63f24e82724460321bb
BLAKE2b-256 fdf911c975900b580250bb8ba6af8c09743d0d1b04d771a80b8531015ee58a8e

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.19-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 661.0 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 66b3b6c7755e65cc3d29f43e03e6788cf610d21ed2dca005de9df8410957ff5c
MD5 9b56070e8158a5cfbd48b0620ccef2ce
BLAKE2b-256 d13c3217e2dec7f5fce626372961badcce52aa5c0e27b26c941cff24f7e7edbd

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.19-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 552.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 7482848bfdaacb5cfd2bed8e2c1e3e089b0e045a52fea35a6a259e4d3847fc2b
MD5 92bdd5fa1933dddc757707f9b7edc61f
BLAKE2b-256 8033b0c9edc3a0ba8958ce0ac762dba75dd0c0c6dcc2f3dfa11e3c8529da6996

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp36-cp36m-win32.whl.

File metadata

  • Download URL: irspack-0.1.19-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 491.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 30fb45ddc644e5704e000baa58f67e23ee0c7ee4063d40cb2dd677bac162e58d
MD5 ad0a28d2f385869588b058e38427ab4b
BLAKE2b-256 60fc6e97344a108b90a6d6af1271e9b282018c2308e5d2bf4627a2273402eeff

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.19-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1ba3e2b514cdcb0598368b0bf6ee8b6ab64761b3ddff1114719c3685f1a57646
MD5 c77a9e52b188c72ebb4cc18abc9e7f3b
BLAKE2b-256 f6e3c64957a5e12d1708af95d90736e48b295d65075a986435d2c2d9db337b77

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.19-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 cef2f442560b437ac98444b785e490f78a5e1cf4297787fa2af73ff0c38dfb3d
MD5 ea0359e17359c097485a522d81c970aa
BLAKE2b-256 b8e748b11eddee978798986166bb4cb8160ef4b614cb4ddc621a9c87f72cfb0e

See more details on using hashes here.

File details

Details for the file irspack-0.1.19-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.19-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 660.9 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for irspack-0.1.19-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3f1ef9baf2156e44a7f93af15655c76b060912ad3980490859fae9446303d9b8
MD5 1d5490383ccb57e9f415da4d0a6ee1f5
BLAKE2b-256 1139db63773fa61fb5a007cb969fcb39a0f14ab84e8e06df49735fcf91646390

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page