Skip to main content

Implicit feedback-based recommender system pack

Project description

irspack

Python pypi GitHub license Build Read the Docs codecov

Docs

irspack is a Python package to train, evaluate, and optimize recommender systems based on implicit feedback.

There are already great packages for this purpose like

However, I decided to implement my own one to

  • Use optuna for more efficient parameter search. In particular, if an early stopping scheme is available, optuna can prune unpromising trial based on the intermediate validation score, which drastically reduces overall running time for tuning.
  • Use multi-threaded implementations of the number of algorithms (KNN and IALS) in C++.
  • Deal with user cold-start scenarios using "CB2CF" strategy, which I found very convenient in practice.

Installation & Optional Dependencies

There are binaries for Linux, MacOS, and Windows with python>=3.6. You can install them via

pip install irspack

The binaries have been compiled to use AVX instruction. If you want to use AVX2/AVX512 or your environment does not support AVX, install it from source like

CFLAGS="-march=native" pip install git+https://github.com/tohtsky/irspack.git

In that case, you must have a decent version of C++ compiler (with C++11 support).

Optional Dependencies

I have also prepared a wrapper class (BPRFMRecommender) to train and optimize BPR/warp loss Matrix factorization implemented in lightfm. To use it you have to install lightfm separately, e.g. by

pip install lightfm

If you want to use Mult-VAE and CB2CF features in cold-start scenarios, you'll need the following additional (pip-installable) packages:

Basic Usage

Step 1. Train a recommender

We first represent the user/item interaction as a scipy.sparse matrix. Then we can feed it into our Recommender classes:

import numpy as np
import scipy.sparse as sps
from irspack.recommenders import P3alphaRecommender
from irspack.dataset.movielens import MovieLens100KDataManager

df = MovieLens100KDataManager().read_interaction()
unique_user_id, user_index = np.unique(df.userId, return_inverse=True)
unique_movie_id, movie_index = np.unique(df.movieId, return_inverse=True)
X_interaction = sps.csr_matrix(
  (np.ones(df.shape[0]), (user_index, movie_index))
)

recommender = P3alphaRecommender(X_interaction)
recommender.learn()

# for user 0 (whose userId is unique_user_id[0]),
# compute the masked score (i.e., already seen items have the score of negative infinity)
# of items.
recommender.get_score_remove_seen([0])

Step 2. Evaluate on a validation set

We have to split the dataset to train and validation sets

from irspack.split import rowwise_train_test_split
from irspack.evaluator import Evaluator
X_train, X_val = rowwise_train_test_split(
    X_interaction, test_ratio=0.2, random_seed=0
)

# often, X_val is defined for a subset of users.
# `offset` specifies where the validated user blocks begin.
# In this split, X_val is defined for the same users as X_train,
# so offset = 0
evaluator = Evaluator(ground_truth=X_val, offset=0)

recommender = P3alphaRecommender(X_train)
recommender.learn()
evaluator.get_score(recommender)

This will print something like

{
  'appeared_item': 106.0,
  'entropy': 3.840445116672292,
  'gini_index': 0.9794929280523742,
  'hit': 0.8854718981972428,
  'map': 0.11283343078231302,
  'n_items': 1682.0,
  'ndcg': 0.3401244303579389,
  'precision': 0.27560975609756017,
  'recall': 0.19399215770339678,
  'total_user': 943.0,
  'valid_user': 943.0
}

Step 3. Optimize the Hyperparameter

Now that we can evaluate the recommenders' performance against the validation set, we can use optuna-backed hyperparameter optimizer.

from irspack.optimizers import P3alphaOptimizer

optimizer = P3alphaOptimizer(X_train, evaluator)
best_params, trial_dfs  = optimizer.optimize(n_trials=20)

# maximal ndcg around 0.38 ~ 0.39
trial_dfs.ndcg.max()

Of course, we have to hold-out another interaction set for test, and measure the performance of tuned recommender against the test set. See examples/ for more complete examples.

TODOs

  • complete documentation
  • more splitting schemes
  • more benchmark dataset

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

irspack-0.1.6.tar.gz (126.4 kB view details)

Uploaded Source

Built Distributions

irspack-0.1.6-cp39-cp39-win_amd64.whl (476.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

irspack-0.1.6-cp39-cp39-win32.whl (431.7 kB view details)

Uploaded CPython 3.9 Windows x86

irspack-0.1.6-cp39-cp39-manylinux2010_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

irspack-0.1.6-cp39-cp39-manylinux2010_i686.whl (8.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

irspack-0.1.6-cp39-cp39-macosx_10_9_x86_64.whl (592.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

irspack-0.1.6-cp38-cp38-win_amd64.whl (480.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

irspack-0.1.6-cp38-cp38-win32.whl (431.3 kB view details)

Uploaded CPython 3.8 Windows x86

irspack-0.1.6-cp38-cp38-manylinux2010_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

irspack-0.1.6-cp38-cp38-manylinux2010_i686.whl (8.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

irspack-0.1.6-cp38-cp38-macosx_10_9_x86_64.whl (591.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

irspack-0.1.6-cp37-cp37m-win_amd64.whl (482.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

irspack-0.1.6-cp37-cp37m-win32.whl (434.0 kB view details)

Uploaded CPython 3.7m Windows x86

irspack-0.1.6-cp37-cp37m-manylinux2010_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

irspack-0.1.6-cp37-cp37m-manylinux2010_i686.whl (8.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

irspack-0.1.6-cp37-cp37m-macosx_10_9_x86_64.whl (587.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

irspack-0.1.6-cp36-cp36m-win_amd64.whl (482.7 kB view details)

Uploaded CPython 3.6m Windows x86-64

irspack-0.1.6-cp36-cp36m-win32.whl (433.9 kB view details)

Uploaded CPython 3.6m Windows x86

irspack-0.1.6-cp36-cp36m-manylinux2010_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

irspack-0.1.6-cp36-cp36m-manylinux2010_i686.whl (8.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

irspack-0.1.6-cp36-cp36m-macosx_10_9_x86_64.whl (587.5 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file irspack-0.1.6.tar.gz.

File metadata

  • Download URL: irspack-0.1.6.tar.gz
  • Upload date:
  • Size: 126.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6.tar.gz
Algorithm Hash digest
SHA256 469c1ed4cfe9b64cf4d034d039cbb8351af5b4666ff253e7fe575751141f8173
MD5 9eccd914edb1f46f8a6ce11088c1145a
BLAKE2b-256 dc126dcfd73c0d85bd56bbed41cad6256a9e814d2e4e9b2a86ee4b423a885c2a

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 476.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ed5a8a347c9a2550cd90437a53298ccc0625c93c159b7bdb8efed05675d8f324
MD5 1884191b5c732087da75eae4a7dd2d4d
BLAKE2b-256 2c59d8f5f2d05116d8c9be61e7452025cdc354647862c3d6d1da685ae5e138ae

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp39-cp39-win32.whl.

File metadata

  • Download URL: irspack-0.1.6-cp39-cp39-win32.whl
  • Upload date:
  • Size: 431.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e11ff8e653ce9293ef4ce5f3841528c7a9243f61b5d48e0176952bf718972b8b
MD5 daea0c4c0425c5509694d4736d1d9aca
BLAKE2b-256 f85e8fab3684be2ef56aa220bef7bdf1fe88e6583eaa595643a98b6a7a6a33b2

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.6-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d1037728bb88e83deec0ea85e43a1c914bb7e70e3cef844f5a4c084bf8dd086f
MD5 b988c13105fd21400e4f73fe8502d579
BLAKE2b-256 65d156bdf517f1a86decceda62061c8bc4f3dd3552bd734cc7fb0a2f05a726bc

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.6-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 245f3e8448aa12deec99d94089be1eb75ea94cee909f91560bb4c1bd5ca0d1dd
MD5 492fa3bd79a6683cb28e390fd6dfe2e5
BLAKE2b-256 0c2dc3196e9a6cd30467a6598485ca69f8e869f301a7c322da454b7afcae1278

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.6-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 592.7 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 14179acb2d3a4258814abbfb1562c4715b4135c1d9041dd4ba7b0fac4eb37467
MD5 3fd1d0ebf98e71f44138a679460b03a0
BLAKE2b-256 3c64b942bfe54b83e68a352f676875b872d6d2269589d0c50596190b80f1a689

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 480.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e0e8479c35e17763ce07a7af2dced586c8a6a1809b3bb793864f2be0fbb5c687
MD5 6612bbb081784727ec776300bb19db5f
BLAKE2b-256 c652a579c7ee6d7034b04be977d5b3b216dff77210e90f713101b3d1b90a4244

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp38-cp38-win32.whl.

File metadata

  • Download URL: irspack-0.1.6-cp38-cp38-win32.whl
  • Upload date:
  • Size: 431.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d8f4515542d5985a1e8e0db883299ec5335fa737e982e3a1393885c499e3eb56
MD5 74baef3573ec953c34623f1c28670a08
BLAKE2b-256 3fe23dab2fe44d9f536acc994d3ec54901401e4ca316e135d9fd4dcfc04b4160

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.6-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 8.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 68f650f57ce418defcba481ea0771f2cd7ef9a1368f1e3409b9452dc92d7b20c
MD5 3d2335fe8e9491fb14ed88e463719f76
BLAKE2b-256 687b4f41125f3969107d5fa0fda3e50127c14f79717c156988249fb6821aa096

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.6-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5ac8c3a5432e4e4f99684f0920409b2ba8bd726e06925bb209e3840a1714bd89
MD5 f41339ddf6ddb766881bac2e244da092
BLAKE2b-256 5edf96ebd3b65292fedaf667167cf9b2ab65876abfaafd1f13c36935760f9c41

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.6-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 591.8 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d3a10bed535d1644a8a6cd5a1343367925d24b1f243f8f2d26ba70ef57de1fa0
MD5 c08eafb37d0d1f28f4487280d84cca49
BLAKE2b-256 38676ca932fad95c121d9e8ddf3c0c5ff3a388862eb1ad3ac3fa65b8e0a94a78

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 482.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 05966d1fd4424ab295da25b36ef9ada5a96e4cbe23afe61a7b185828dd2d1cf1
MD5 f513fb9409b6dda7305e499c198d902c
BLAKE2b-256 cd400110ac48d11208ca0be8dbe73a7f53b9b863d274d6802f4b1246d88e038e

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp37-cp37m-win32.whl.

File metadata

  • Download URL: irspack-0.1.6-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 434.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 57fa04220344ed961df8d8bb2eef067e5dce62fc1608d1a59aff8d1e06f8ca38
MD5 32bf7f9763f40538fb2786c2b441af77
BLAKE2b-256 e6156efd21ee81ef74e7a415f7dae3aed038153d982aca9aac9209945642f2de

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.6-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9744e9c7dfa30357a030ef6e86114833a1c52afe240b09db0c39b67f6b12ec51
MD5 0465f81ba988f083be1dd37799879da8
BLAKE2b-256 00a6fb30c1cc3d458eece45a6f12cffeeb12fe0bac2b7e591f542aeaa9c34e3b

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.6-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 892d7976fa488391d62ba88624ec67ab47e9e2b315a3b2497b035c7127e11fd8
MD5 99908e703f48bdf68ae855cab53cdea0
BLAKE2b-256 6e0da29d969c3a857c47e701e62f482cd4f2154b9d7207dfd445af9598e81124

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.6-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 587.6 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 05e890d9c2b1aa94a4f1f0bccdf4ed90e04ff0475190f4283872f74a8c86225c
MD5 ce5dcde8d40b311fac97bd7ab6be96cc
BLAKE2b-256 ce0ef894dd449a22a48413e2d364f0e02313b28967b85fc02e67eb8ac860caed

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.6-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 482.7 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 dec309eb7c31118ffd1177bfb4abba81d6f212e2aad68ce6f0fb531a4a358e76
MD5 aff222c6c70d2fbcbea4cad86c86982f
BLAKE2b-256 adb95096f19a88fe6cd3e8ba224da69338b2a3711f1014c308bd3e035c109280

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp36-cp36m-win32.whl.

File metadata

  • Download URL: irspack-0.1.6-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 433.9 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 214c1bd2b1facf92d70ffea19fb74f870072ed2011a169fff1aa282fcf3da7b3
MD5 8138eb8294710bc90450c15ede9659f9
BLAKE2b-256 7124958a0fd2375cf819ac25106e811600b59ebc4df6001fba2256f65ccfd286

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.6-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 372431da66a97680afdc4385200d145e5f2e6d278bef6d34de6a1d205d739fab
MD5 ea137c642d892181ee2a6375afe1921e
BLAKE2b-256 b2a7e4bf2dd0b8c4f03c305728cf72f5ee3ee623df93b3f079b626683f74c40d

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.6-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 832732be2addb20697be933afa056525e9ce6e2c91b4e8aee70e803056dd42f9
MD5 81ea5079853403bc5ee39dde5c3c6023
BLAKE2b-256 ec6f25c39e3ff319bc34c2782399e49f053979b3ff2d7b8fc57788ff7cb990f1

See more details on using hashes here.

File details

Details for the file irspack-0.1.6-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.6-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 587.5 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.6-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5ebc0f4222aae62a6a29eedd572d9246f2c876236fd5c4d18bf47987591a5429
MD5 64da0b87587b3a9ec63cda5bbc073e69
BLAKE2b-256 c108596ba91804c5dcb8d1c501a13dc9f06a6088c2c2502519c2fbcfabab347e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page