Skip to main content

Implicit feedback-based recommender system pack

Project description

irspack

Python pypi GitHub license Build Read the Docs codecov

Docs

irspack is a Python package to train, evaluate, and optimize recommender systems based on implicit feedback.

There are already great packages for this purpose like

However, I decided to implement my own one to

  • Use optuna for more efficient parameter search. In particular, if an early stopping scheme is available, optuna can prune unpromising trial based on the intermediate validation score, which drastically reduces overall running time for tuning.
  • Use multi-threaded implementations wherever possible. Currently, several important algorithms (KNN, iALS, SLIM) and performance evaluators are parallelized using C++ thread.
  • Deal with user cold-start scenarios using "CB2CF" strategy, which I found very convenient in practice.

Installation & Optional Dependencies

There are binaries for Linux, MacOS, and Windows with python>=3.6 with x86 architectures. You can install them via

pip install irspack

The binaries have been compiled to use AVX instruction. If you want to use AVX2/AVX512 or your environment does not support AVX (like Rosetta 2 on Apple M1), install it from source like

CFLAGS="-march=native" pip install git+https://github.com/tohtsky/irspack.git

In that case, you must have a decent version of C++ compiler (with C++11 support). If it doesn't work, feel free to make an issue!

Optional Dependencies

I have also prepared a wrapper class (BPRFMRecommender) to train/optimize BPR/warp loss Matrix factorization implemented in lightfm. To use it you have to install lightfm separately, e.g. by

pip install lightfm

If you want to use Mult-VAE and CB2CF features in cold-start scenarios, you'll need the following additional (pip-installable) packages:

Basic Usage

Step 1. Train a recommender

We first represent the user/item interaction as a scipy.sparse matrix. Then we can feed it into our Recommender classes:

import numpy as np
import scipy.sparse as sps
from irspack.recommenders import P3alphaRecommender
from irspack.dataset.movielens import MovieLens100KDataManager

df = MovieLens100KDataManager().read_interaction()
unique_user_id, user_index = np.unique(df.userId, return_inverse=True)
unique_movie_id, movie_index = np.unique(df.movieId, return_inverse=True)
X_interaction = sps.csr_matrix(
  (np.ones(df.shape[0]), (user_index, movie_index))
)

recommender = P3alphaRecommender(X_interaction)
recommender.learn()

# for user 0 (whose userId is unique_user_id[0]),
# compute the masked score (i.e., already seen items have the score of negative infinity)
# of items.
recommender.get_score_remove_seen([0])

Step 2. Evaluate on a validation set

We have to split the dataset to train and validation sets

from irspack.split import rowwise_train_test_split
from irspack.evaluator import Evaluator
X_train, X_val = rowwise_train_test_split(
    X_interaction, test_ratio=0.2, random_seed=0
)

# often, X_val is defined for a subset of users.
# `offset` specifies where the validated user blocks begin.
# In this split, X_val is defined for the same users as X_train,
# so offset = 0
evaluator = Evaluator(ground_truth=X_val, offset=0)

recommender = P3alphaRecommender(X_train)
recommender.learn()
evaluator.get_score(recommender)

This will print something like

{
  'appeared_item': 106.0,
  'entropy': 3.840445116672292,
  'gini_index': 0.9794929280523742,
  'hit': 0.8854718981972428,
  'map': 0.11283343078231302,
  'n_items': 1682.0,
  'ndcg': 0.3401244303579389,
  'precision': 0.27560975609756017,
  'recall': 0.19399215770339678,
  'total_user': 943.0,
  'valid_user': 943.0
}

Step 3. Optimize the Hyperparameter

Now that we can evaluate the recommenders' performance against the validation set, we can use optuna-backed hyperparameter optimizer.

from irspack.optimizers import P3alphaOptimizer

optimizer = P3alphaOptimizer(X_train, evaluator)
best_params, trial_dfs  = optimizer.optimize(n_trials=20)

# maximal ndcg around 0.38 ~ 0.39
trial_dfs.ndcg.max()

Of course, we have to hold-out another interaction set for test, and measure the performance of tuned recommender against the test set. See examples/ for more complete examples.

TODOs

  • complete documentation
  • more splitting schemes
  • more benchmark dataset

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

irspack-0.1.9.tar.gz (130.7 kB view details)

Uploaded Source

Built Distributions

irspack-0.1.9-cp39-cp39-win_amd64.whl (483.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

irspack-0.1.9-cp39-cp39-win32.whl (435.7 kB view details)

Uploaded CPython 3.9 Windows x86

irspack-0.1.9-cp39-cp39-manylinux2010_x86_64.whl (9.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

irspack-0.1.9-cp39-cp39-manylinux2010_i686.whl (8.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

irspack-0.1.9-cp39-cp39-macosx_10_9_x86_64.whl (604.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

irspack-0.1.9-cp38-cp38-win_amd64.whl (487.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

irspack-0.1.9-cp38-cp38-win32.whl (435.2 kB view details)

Uploaded CPython 3.8 Windows x86

irspack-0.1.9-cp38-cp38-manylinux2010_x86_64.whl (9.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

irspack-0.1.9-cp38-cp38-manylinux2010_i686.whl (8.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

irspack-0.1.9-cp38-cp38-macosx_10_9_x86_64.whl (604.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

irspack-0.1.9-cp37-cp37m-win_amd64.whl (489.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

irspack-0.1.9-cp37-cp37m-win32.whl (438.3 kB view details)

Uploaded CPython 3.7m Windows x86

irspack-0.1.9-cp37-cp37m-manylinux2010_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

irspack-0.1.9-cp37-cp37m-manylinux2010_i686.whl (8.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

irspack-0.1.9-cp37-cp37m-macosx_10_9_x86_64.whl (599.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

irspack-0.1.9-cp36-cp36m-win_amd64.whl (489.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

irspack-0.1.9-cp36-cp36m-win32.whl (438.2 kB view details)

Uploaded CPython 3.6m Windows x86

irspack-0.1.9-cp36-cp36m-manylinux2010_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

irspack-0.1.9-cp36-cp36m-manylinux2010_i686.whl (8.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

irspack-0.1.9-cp36-cp36m-macosx_10_9_x86_64.whl (599.4 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file irspack-0.1.9.tar.gz.

File metadata

  • Download URL: irspack-0.1.9.tar.gz
  • Upload date:
  • Size: 130.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9.tar.gz
Algorithm Hash digest
SHA256 21890a36f52919649e43a03e5540effa67783ba9a73b7274f5a68f0807509029
MD5 6c443c376776691013b05445753beec6
BLAKE2b-256 bc60662124a0a325a7917fb50976701c95077913beb5dbafd9496608e5520f6f

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.9-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 483.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f00a44b4965db1f641298f395f5c685709da2b8e208ed111d90c6eea490619f3
MD5 7dcb1dc4fb38e6aa5f1a35d991c417a0
BLAKE2b-256 0e6d7214a98e41e9248f635a1af1e1da06accf88dc77ca7262c53eaf76d66d24

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp39-cp39-win32.whl.

File metadata

  • Download URL: irspack-0.1.9-cp39-cp39-win32.whl
  • Upload date:
  • Size: 435.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 5496f9f63b9b0212aa489dccd64b354d38789c406d1a01c240e1aa089c2b3708
MD5 bed363d561ffc3798b8328fbad777da2
BLAKE2b-256 af549c31d83eff4573caee9c11335ce1b1f9a740a8989245225bfe957bcf95e0

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.9-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.0 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 eddf9fb87717e5f47c6923e723e815b842120efbbb06b2bc1fb8a06a9de851fd
MD5 13e316e33861f870d9eec69bf987cf0b
BLAKE2b-256 c19e165ade2a906a4298ea1a066b16e31236bcb6b85a0d80ad6e232044c80d94

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.9-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f2abef8a69580c7bc4b07459a4c3fe3786a70589323f0fb17d04eb6f6129bfba
MD5 2328a9c89fb927dbe737d4c2c5c20177
BLAKE2b-256 d827d634173f2f91686e24f026abddcf9f7f7caaf8eb127c55db170093301163

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.9-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 604.8 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4c38982ff76bf2d18789c8b9f155896d916c38d013bbd9443b961d0d1e8ad6cb
MD5 1904fa0b7466ba74da46f4ef27748885
BLAKE2b-256 b4b80c307024681c9757634b21cb5202c6ecc41d056efc4f043aaaa8178ef300

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.9-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 487.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1b6bd04089f2709db7083f64556bc97763e589b2ba9b2f30d0953ebbb88c01be
MD5 09209ddfd5feb5946256e94736e19bce
BLAKE2b-256 571aa3b0e9464af14203614d6e0c2b88985d4bc69917dd0f55fb06a9c4d2ec74

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp38-cp38-win32.whl.

File metadata

  • Download URL: irspack-0.1.9-cp38-cp38-win32.whl
  • Upload date:
  • Size: 435.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 64b50186500758e0d133ea7ff8e309b4a0ba8c08ca176ec6d744d42405228df3
MD5 d1024d100573208c1f6b20acd2d3f6a0
BLAKE2b-256 09e9681ba757909254a49b6e0d609aee9ffb0885ebcb3871d216781d02cb3e3a

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.9-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.0 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b41dfdf1505765e2bee24beee2981656ff9111cc25d344aed13dd35186b39314
MD5 9157f26760c2e241e395300d3d47daa7
BLAKE2b-256 1ecf7bc9d379f28cd714a6ff52be80aaecc8e5da77c3de35ad8360097e2fff1c

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.9-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 67dcaa673aec5e33d89612e500dd2111c2ae07d4e9bc00aed35f8a816bdd3d4b
MD5 71e3200f3402bb851cd5cb4205eab7dd
BLAKE2b-256 7110afccca864ed5ceafd051d169d40a939a7ceacf2149da363696c2101ebb1f

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.9-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 604.2 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c64eadc19d5d3d7d62fc340aec978bbdc7a9359113e0d8861a68e035fe1c8af7
MD5 407d7831d696c45700cf6430097a0cfc
BLAKE2b-256 0af57ea404c15a9d37a4684a1c22c3f6a82b160501b43364ff8c5f512a13ea69

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.9-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 489.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b124b7c5d1464da1ff56b268dd78042a82ea8b410f222766234134fa87733364
MD5 ba015ac9d3a9e4c8cd467d65eaf003a0
BLAKE2b-256 3743845e0f8461faeb679cd64a282ee0920fafe82cd402a8ee1ed0886ba627f5

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp37-cp37m-win32.whl.

File metadata

  • Download URL: irspack-0.1.9-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 438.3 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3ab1321d53731c316346fa6a45dec42913fd60816265760593ed03617b73d50f
MD5 2c22a7a4d33a6172ed1d7ee51dde5311
BLAKE2b-256 3a348064346e9b073df08dd211512718388bf1196be1d0c6ffad2c8be5165538

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.9-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 400c9a028597df866e6ef6be24aaebf870e1185b3ed965b1e17c759884dd87f4
MD5 5d78de45cda864e0c63cb53bdf2d8f85
BLAKE2b-256 c2ceb0ff30aa8c910276f8a216f1fb55dae46ebf5ee862d66ad3622a0882daff

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.9-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b0db15320924b9a28ea97e22d41add5c374bc2d47a89ba9385230a0a00e74ddf
MD5 351db090ac4a0981daff3468399ad4ff
BLAKE2b-256 8aeb9896cd9719a1c78cfa1aaeb2e07267afd5d435a2b3a5614c95a1fe890a39

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.9-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 599.4 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 93324eaaa537596dfdd39be362d619fd48d432fdd029c8e86cab7a01f57516ba
MD5 abc2db1b55a7b817ec619ddfc64d56a0
BLAKE2b-256 56f01f625a1896c61f9d3fdfa95e57f0ed13eb39dd45a14190219a3e594a86bb

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.1.9-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 489.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a649e187f4d8af63add9301263f1e26db8ae3ddd07969dfca0b7d8fb941fce64
MD5 b6f3cd106cd1be17aa8a6e6dcfd968ee
BLAKE2b-256 6f33f18c5d03b9c77d78fdc0656aea5421b073c4f83a1de54f67a3d0e877ee5b

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp36-cp36m-win32.whl.

File metadata

  • Download URL: irspack-0.1.9-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 438.2 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 35fb3fef50bd81708f6bf4db80e0f0967134d33782a691afdf5bed2b2277d9b8
MD5 2e1b6bde1087c0aa98825fa84f7b4d9e
BLAKE2b-256 59be876e60b695c9a352064f3814a804f9557e6453fb281c361ca8e5195b5859

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.9-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9455f17c1a38f10dc358724f94f9e8ed3fc4b5b95c3bda97b118fca24f876964
MD5 e2a75c100c6378146ab22b0956f2697e
BLAKE2b-256 3d17316543eb95183e4696403e399d5f4fddf6a08cda4d107ba5d02aa066358b

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: irspack-0.1.9-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 8.9 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8861194cf70ab447f1f747d22fda0cc23b0dab83e21ffdc5a6e35e329a311654
MD5 db3ef7700ef16a03786971e986e55df7
BLAKE2b-256 762c8fc72b1177ff14b12dd51b613b4c27626e2bb01a1ccdb38c8c098247f5d7

See more details on using hashes here.

File details

Details for the file irspack-0.1.9-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.1.9-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 599.4 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for irspack-0.1.9-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a2beed6300b5c819e44af39ff57fbce981c3750cd22c90794a19abafaa93ce23
MD5 1712adae3cc27ec53ef826bfe276be43
BLAKE2b-256 60180bc5b892664e83b0b8db56af1fa69556eed104e26e52efa651dfed964536

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page