Skip to main content

Implicit feedback-based recommender system pack

Project description

irspack

Python pypi GitHub license Build Read the Docs codecov

Docs

irspack is a Python package to train, evaluate, and optimize recommender systems based on implicit feedback.

There are already great packages for this purpose like

However, I decided to implement my own one to

  • Use optuna for more efficient parameter search. In particular, if an early stopping scheme is available, optuna can prune unpromising trial based on the intermediate validation score, which drastically reduces overall running time for tuning.
  • Use multi-threaded implementations wherever possible. Currently, several important algorithms (KNN, iALS, SLIM) and performance evaluators are parallelized using C++ thread.

Installation & Optional Dependencies

There are binaries for Linux, MacOS, and Windows with python>=3.6 with x86 architectures. You can install them via

pip install irspack

The binaries have been compiled to use AVX instruction. If you want to use AVX2/AVX512 or your environment does not support AVX (like Rosetta 2 on Apple M1), install it from source like

CFLAGS="-march=native" pip install git+https://github.com/tohtsky/irspack.git

In that case, you must have a decent version of C++ compiler (with C++11 support). If it doesn't work, feel free to make an issue!

Optional Dependencies

I have also prepared a wrapper class (BPRFMRecommender) to train/optimize BPR/warp loss Matrix factorization implemented in lightfm. To use it you have to install lightfm separately, e.g. by

pip install lightfm

If you want to use Mult-VAE and CB2CF features in cold-start scenarios, you'll need the following additional (pip-installable) packages:

Basic Usage

Step 1. Train a recommender

We first represent the user/item interaction as a scipy.sparse matrix. Then we can feed it into our Recommender classes:

import numpy as np
import scipy.sparse as sps
from irspack.recommenders import P3alphaRecommender
from irspack.dataset.movielens import MovieLens100KDataManager

df = MovieLens100KDataManager().read_interaction()
unique_user_id, user_index = np.unique(df.userId, return_inverse=True)
unique_movie_id, movie_index = np.unique(df.movieId, return_inverse=True)
X_interaction = sps.csr_matrix(
  (np.ones(df.shape[0]), (user_index, movie_index))
)

recommender = P3alphaRecommender(X_interaction)
recommender.learn()

# for user 0 (whose userId is unique_user_id[0]),
# compute the masked score (i.e., already seen items have the score of negative infinity)
# of items.
recommender.get_score_remove_seen([0])

Step 2. Evaluate on a validation set

We have to split the dataset to train and validation sets

from irspack.split import rowwise_train_test_split
from irspack.evaluator import Evaluator

# Random split
X_train, X_val = rowwise_train_test_split(
    X_interaction, test_ratio=0.2, random_state=0
)

evaluator = Evaluator(ground_truth=X_val)

recommender = P3alphaRecommender(X_train)
recommender.learn()
evaluator.get_score(recommender)

This will print something like

{
  'appeared_item': 106.0,
  'entropy': 3.840445116672292,
  'gini_index': 0.9794929280523742,
  'hit': 0.8854718981972428,
  'map': 0.11283343078231302,
  'n_items': 1682.0,
  'ndcg': 0.3401244303579389,
  'precision': 0.27560975609756017,
  'recall': 0.19399215770339678,
  'total_user': 943.0,
  'valid_user': 943.0
}

Step 3. Optimize the Hyperparameter

Now that we can evaluate the recommenders' performance against the validation set, we can use optuna-backed hyperparameter optimizer.

from irspack.optimizers import P3alphaOptimizer

optimizer = P3alphaOptimizer(X_train, evaluator)
best_params, trial_dfs  = optimizer.optimize(n_trials=20)

# maximal ndcg around 0.38 ~ 0.39
trial_dfs["ndcg@10"].max()

Of course, we have to hold-out another interaction set for test, and measure the performance of tuned recommender against the test set. See examples/ for more complete examples.

TODOs

  • more benchmark dataset

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

irspack-0.2.2.tar.gz (139.1 kB view details)

Uploaded Source

Built Distributions

irspack-0.2.2-cp310-cp310-win_amd64.whl (563.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

irspack-0.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

irspack-0.2.2-cp310-cp310-macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

irspack-0.2.2-cp39-cp39-win_amd64.whl (557.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

irspack-0.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

irspack-0.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

irspack-0.2.2-cp39-cp39-macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

irspack-0.2.2-cp38-cp38-win_amd64.whl (563.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

irspack-0.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

irspack-0.2.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

irspack-0.2.2-cp38-cp38-macosx_10_9_x86_64.whl (714.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

irspack-0.2.2-cp37-cp37m-win_amd64.whl (564.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

irspack-0.2.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

irspack-0.2.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

irspack-0.2.2-cp37-cp37m-macosx_10_9_x86_64.whl (707.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

irspack-0.2.2-cp36-cp36m-win_amd64.whl (567.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

File details

Details for the file irspack-0.2.2.tar.gz.

File metadata

  • Download URL: irspack-0.2.2.tar.gz
  • Upload date:
  • Size: 139.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for irspack-0.2.2.tar.gz
Algorithm Hash digest
SHA256 e41f8be67f21f88b8b4971b72181c496ffcdda624ea7047b6082e40351dd2d1b
MD5 0e4f68fc16b5201fafb7aef3d5916192
BLAKE2b-256 30e0caf9431cc4c86a2fc853da9a065ed4fb7698d2eb3e29ab9d08eecf324434

See more details on using hashes here.

File details

Details for the file irspack-0.2.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: irspack-0.2.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 563.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for irspack-0.2.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4b6bb5058a70cf69fc4d370ea6099b3c8ea51a1a0127e8742c27615d0106c27f
MD5 f053a37a35fc9d1a683bea38758483a4
BLAKE2b-256 47b82c4d62c66955f3686e15a94198ee88f261ffc8a4edbf58a874e2651d6f7f

See more details on using hashes here.

File details

Details for the file irspack-0.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: irspack-0.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 10.8 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for irspack-0.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 978bbff6b4949380a2bfba85fb1bccfa999a3f0eaa73ad1d161502f4848157dd
MD5 23b92094c32fb0618a257b900a45c832
BLAKE2b-256 50098f1b1ab7d04817a9262f8c359809cd20e0a95e59c68ac986394cc42c3e16

See more details on using hashes here.

File details

Details for the file irspack-0.2.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: irspack-0.2.2-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for irspack-0.2.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9d1cfeb17f61037b82b43fbd8fad283b86c98aab9fa8d951091dbf81d0ca7b47
MD5 bb3e1adfb3da5513ae4a9140c4bb8530
BLAKE2b-256 7d752ba41b1e493a0a29beb947529ab763516a04fcbecd902a6f03325829052f

See more details on using hashes here.

File details

Details for the file irspack-0.2.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: irspack-0.2.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 557.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for irspack-0.2.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 efba6abd67c7b81675a0f6ee714e7dc08e4eb8f33684570e94ebb933578d89fb
MD5 504678233e7eb2164c64bd16585dffb9
BLAKE2b-256 61f224d4b13f868b3d34204600635a878ed385ca002d5ac96caf3782d4744156

See more details on using hashes here.

File details

Details for the file irspack-0.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: irspack-0.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 10.9 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for irspack-0.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb7bd95071e6ad912b2f43315af4b7342a8ef9d131c4de0151b3c2e3194f16ce
MD5 81ca182cd82209c6c2ed67ec6258115f
BLAKE2b-256 b1d8a14342c5d6fc9295244aa9458f0d0c0c042013f049b88b096400691453ab

See more details on using hashes here.

File details

Details for the file irspack-0.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: irspack-0.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 10.8 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for irspack-0.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f0be9e635606150918ab50391eb18f61ab53da6bf3e4358305290db40495c0fc
MD5 1bf64599ef3a42b07600106e70b0a966
BLAKE2b-256 db063612a7ef410cb84b295f365997c289dceab9c106e4def84818ef3f34609e

See more details on using hashes here.

File details

Details for the file irspack-0.2.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: irspack-0.2.2-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for irspack-0.2.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0396b5c6e2f013b6ca38c6fbd8fcaabe76fb4db8853e58d04c574f285741e978
MD5 68860d774ca778b26f1a7ae12c9d4ea0
BLAKE2b-256 6cbc0e3c78c4394197495e67ff82747a94d9e4979713dae81ca0a7f202ebcc70

See more details on using hashes here.

File details

Details for the file irspack-0.2.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: irspack-0.2.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 563.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for irspack-0.2.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 874fc9a6bfc7d2adb22299af7bc64bc7c99cdf96fb82e6d90e727f0df39741d4
MD5 102c804d24d6a3e75cdc397c6dad1899
BLAKE2b-256 4d5dcf319485ddef5af5d76ba68483e158a9a1527456640037708c707fd47e34

See more details on using hashes here.

File details

Details for the file irspack-0.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: irspack-0.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 10.9 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for irspack-0.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b108a3f87d02c40e95636c557e0d2be694c374970c70c6a322284559df634a6d
MD5 62a66facb4478a7f9c579050a0e7b330
BLAKE2b-256 965dd2ee15da62a0b58555da14a84054fb6d01910eac3b36fe93d41552ba552a

See more details on using hashes here.

File details

Details for the file irspack-0.2.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: irspack-0.2.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 10.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for irspack-0.2.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 523b6398fc8b3518b2862f1c51d1ad84e7f58a86c9bef28a4dc489c5f8390fe3
MD5 6a1edb49772e85b53d3618625fa4cf94
BLAKE2b-256 43a8cf10e2750f3446fd8284728fa374d9feade7772bafb12cb224a9a70e5be6

See more details on using hashes here.

File details

Details for the file irspack-0.2.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.2.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 714.1 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for irspack-0.2.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 01550d6921f94788e999e06c091f3b051afc8bc6e3169b2b903de22454e7a2ec
MD5 8a4fe71b95f2ce8c91d1edec6b088f4e
BLAKE2b-256 d732f0ed6c0b4adea55e7877bc7f76d1deed0714bfb0c03c49e74a05daf0c71f

See more details on using hashes here.

File details

Details for the file irspack-0.2.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.2.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 564.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for irspack-0.2.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0ae04e335623f07c2642351060fdb42e9746353d713eb1fbbf560a1301edd648
MD5 ba63cf8a3caa356cfc79f8bb42cae09b
BLAKE2b-256 ca08d6c6ae66f71ac09da4582cdf29f27debc2bcc3ba390e0fef4c517544e2cc

See more details on using hashes here.

File details

Details for the file irspack-0.2.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: irspack-0.2.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 11.1 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for irspack-0.2.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eb41bf4371013ec8bc86f9924b4e5e798d277ccde141dbfffe7fd9578e5ce5fc
MD5 7a7e1da46b2bc697b9ca36b95ed5526a
BLAKE2b-256 e3933c0d57319f740602b1bff6753c4e5df1249b1b21f211804e970e78bb61bd

See more details on using hashes here.

File details

Details for the file irspack-0.2.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: irspack-0.2.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 10.7 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for irspack-0.2.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dadc94394b327ceec71b3848faebd70311337f835ffbf3c986fe99387eb3e138
MD5 7409d691e13de3ed9e5fd0ee7a2346bf
BLAKE2b-256 0b77b9d0e81f56724ebc2dd23330f502dc2e9bb92b8827b6fa7503cea22595e9

See more details on using hashes here.

File details

Details for the file irspack-0.2.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: irspack-0.2.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 707.5 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for irspack-0.2.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9df460e6c6bcccf2e50087e2f49c37fc984cdcb85d0391b94b4a1bebfc0b1b87
MD5 3feee9c94017bd26db40295259901ecd
BLAKE2b-256 37a4b70d8a7cb0e3726184a597c2a9107f84b7643124e027517c45ab57f54254

See more details on using hashes here.

File details

Details for the file irspack-0.2.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: irspack-0.2.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 567.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for irspack-0.2.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f9c4d1a2a37151b6defaa57b8f505cacf0b6ac3b42c724e0f3b0e79ca6fe789a
MD5 2c5b8986dbe538e63c513cb91cb1e08a
BLAKE2b-256 ecbbc46220de4029f8a15ec6800f288401916d0552935d19aea956d60fd2a0cb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page