Skip to main content

API to access energy data

Project description

isodata logo

Tests PyPI Version

InstallGetting StartedMethod AvailabilityLMP DataSupported LMP MarketsFeedback

isodata provides standardized API to access energy data from the major Independent System Operators (ISOs) in the United States.

Install

isodata supports python 3.7+. Install with pip

python -m pip install isodata

Getting Started

First, we can see all of the ISOs that are supported

>>> import isodata
>>> isodata.list_isos()
                                    Name     Id
0                         California ISO  caiso
1  Electric Reliability Council of Texas  ercot
2                           New York ISO  nyiso
3                   Southwest Power Pool    spp
4                                    PJM    pjm
5                       Midcontinent ISO   miso
6                        ISO New England  isone

Next, we can select an ISO we want to use

>>> iso = isodata.get_iso('caiso')
>>> caiso = iso()

All ISOs have the same API. Here is how we can get the fuel mix

>>> caiso.get_latest_fuel_mix()
ISO: California ISO
Total Production: 43104 MW
Time: 2022-08-03 18:25:00-07:00
+-------------+-------+-----------+
| Fuel        |    MW |   Percent |
|-------------+-------+-----------|
| Natural Gas | 19868 |      46.1 |
| Solar       |  5388 |      12.5 |
| Imports     |  4997 |      11.6 |
| Wind        |  3887 |       9   |
| Large Hydro |  3312 |       7.7 |
| Nuclear     |  2255 |       5.2 |
| Batteries   |  1709 |       4   |
| Geothermal  |   886 |       2.1 |
| Biomass     |   344 |       0.8 |
| Small hydro |   234 |       0.5 |
| Biogas      |   208 |       0.5 |
| Coal        |    16 |       0   |
| Other       |     0 |       0   |
+-------------+-------+-----------+

or the energy demand throughout the current day as a Pandas DataFrame

>>> caiso.get_demand_today()
                         Time   Demand
0   2022-08-03 00:00:00-07:00  30076.0
1   2022-08-03 00:05:00-07:00  29966.0
2   2022-08-03 00:10:00-07:00  29893.0
3   2022-08-03 00:15:00-07:00  29730.0
4   2022-08-03 00:20:00-07:00  29600.0
..                        ...      ...
219 2022-08-03 18:15:00-07:00  41733.0
220 2022-08-03 18:20:00-07:00  41690.0
221 2022-08-03 18:25:00-07:00  41718.0
222 2022-08-03 18:30:00-07:00  41657.0
223 2022-08-03 18:35:00-07:00  41605.0

[224 rows x 2 columns]

we can get today's supply in the same way

>>> caiso.get_supply_today()
                         Time  Supply
0   2022-08-03 00:00:00-07:00   31454
1   2022-08-03 00:05:00-07:00   31366
2   2022-08-03 00:10:00-07:00   30985
3   2022-08-03 00:15:00-07:00   30821
4   2022-08-03 00:20:00-07:00   30667
..                        ...     ...
220 2022-08-03 18:20:00-07:00   43096
221 2022-08-03 18:25:00-07:00   43104
222 2022-08-03 18:30:00-07:00   43013
223 2022-08-03 18:35:00-07:00   42885
224 2022-08-03 18:40:00-07:00   42875

[225 rows x 2 columns]

to get data for a specific day, use the historical method calls. For example,

>>> caiso.get_historical_demand("Jan 1, 2020")
                         Time  Demand
0   2020-01-01 00:00:00-08:00   21533
1   2020-01-01 00:05:00-08:00   21429
2   2020-01-01 00:10:00-08:00   21320
3   2020-01-01 00:15:00-08:00   21272
4   2020-01-01 00:20:00-08:00   21193
..                        ...     ...
284 2020-01-01 23:40:00-08:00   20383
285 2020-01-01 23:45:00-08:00   20297
286 2020-01-01 23:50:00-08:00   20242
287 2020-01-01 23:55:00-08:00   20128
288 2020-01-01 00:00:00-08:00   20025

[289 rows x 2 columns]

The best part is these APIs work across all the supported ISOs

Method Availability

Here is the current status of availability of each method for each ISO

New York ISO California ISO Electric Reliability Council of Texas ISO New England Midcontinent ISO Southwest Power Pool PJM
get_latest_status
get_latest_fuel_mix
get_fuel_mix_today
get_fuel_mix_yesterday
get_historical_fuel_mix
get_latest_demand
get_demand_today
get_demand_yesterday
get_historical_demand
get_latest_supply
get_supply_today
get_supply_yesterday
get_historical_supply

LMP Pricing Data

We are currently adding Locational Marginal Price (LMP). Even though each BA offers different markets, but you can query them with a standardized API

>>> import isodata
>>> nyiso = isodata.NYISO()
>>> nyiso.get_lmp_today("REAL_TIME_5_MIN", locations="ALL")
                          Time           Market Location Location Type    LMP  Energy  Congestion  Loss
0    2022-08-16 00:05:00-04:00  REAL_TIME_5_MIN   CAPITL          Zone  70.88   66.65        1.10  5.33
1    2022-08-16 00:05:00-04:00  REAL_TIME_5_MIN   CENTRL          Zone  68.91   66.64        0.00  2.27
2    2022-08-16 00:05:00-04:00  REAL_TIME_5_MIN   DUNWOD          Zone  75.44   66.65       -1.26  7.53
3    2022-08-16 00:05:00-04:00  REAL_TIME_5_MIN   GENESE          Zone  68.64   66.64        0.00  2.00
4    2022-08-16 00:05:00-04:00  REAL_TIME_5_MIN      H Q          Zone  64.58   66.65        0.00 -2.07
...                        ...              ...      ...           ...    ...     ...         ...   ...
3370 2022-08-16 20:15:00-04:00  REAL_TIME_5_MIN    NORTH          Zone  85.57   87.85        0.00 -2.28
3371 2022-08-16 20:15:00-04:00  REAL_TIME_5_MIN      NPX          Zone  78.73   87.85       15.36  6.24
3372 2022-08-16 20:15:00-04:00  REAL_TIME_5_MIN      O H          Zone  85.48   87.85        0.00 -2.37
3373 2022-08-16 20:15:00-04:00  REAL_TIME_5_MIN      PJM          Zone  94.45   87.85       -1.86  4.74
3374 2022-08-16 20:15:00-04:00  REAL_TIME_5_MIN     WEST          Zone  87.85   87.85        0.00  0.00

[3375 rows x 8 columns]

And here is querying CAISO

>>> import isodata
>>> caiso = isodata.CAISO()
>>> caiso.get_lmp_today('DAY_AHEAD_HOURLY', locations=["TH_NP15_GEN-APND", "TH_SP15_GEN-APND", "TH_ZP26_GEN-APND"])
LMP_TYPE                      Time            Market          Location Location Type        LMP     Energy  Congestion     Loss
0        2022-08-16 00:00:00-07:00  DAY_AHEAD_HOURLY  TH_NP15_GEN-APND          None   89.48766   95.51493     -0.1531 -5.87417
1        2022-08-16 00:00:00-07:00  DAY_AHEAD_HOURLY  TH_SP15_GEN-APND          None   94.02489   95.51493      0.0000 -1.49003
2        2022-08-16 00:00:00-07:00  DAY_AHEAD_HOURLY  TH_ZP26_GEN-APND          None   90.57680   95.51493      0.0000 -4.93812
3        2022-08-16 01:00:00-07:00  DAY_AHEAD_HOURLY  TH_NP15_GEN-APND          None   86.38892   92.12283     -0.0223 -5.71162
4        2022-08-16 01:00:00-07:00  DAY_AHEAD_HOURLY  TH_SP15_GEN-APND          None   90.94366   92.12283      0.0000 -1.17917
..                             ...               ...               ...           ...        ...        ...         ...      ...
67       2022-08-16 22:00:00-07:00  DAY_AHEAD_HOURLY  TH_SP15_GEN-APND          None  131.45525  135.43710      0.0000 -3.98185
68       2022-08-16 22:00:00-07:00  DAY_AHEAD_HOURLY  TH_ZP26_GEN-APND          None  127.04000  135.43710      0.0000 -8.39710
69       2022-08-16 23:00:00-07:00  DAY_AHEAD_HOURLY  TH_NP15_GEN-APND          None  107.36120  113.91108      0.0000 -6.54989
70       2022-08-16 23:00:00-07:00  DAY_AHEAD_HOURLY  TH_SP15_GEN-APND          None  111.22278  113.91108      0.0000 -2.68830
71       2022-08-16 23:00:00-07:00  DAY_AHEAD_HOURLY  TH_ZP26_GEN-APND          None  108.01049  113.91108      0.0000 -5.90059

[72 rows x 8 columns]

You can see what markets are available by accessing the markets property of an iso. For, example

>>> caiso.markets
[<Markets.REAL_TIME_15_MIN: 'REAL_TIME_15_MIN'>, <Markets.REAL_TIME_HOURLY: 'REAL_TIME_HOURLY'>, <Markets.DAY_AHEAD_HOURLY: 'DAY_AHEAD_HOURLY'>]

The possible lmp query methods are ISO.get_latest_lmp, ISO.get_lmp_today, ISO.get_lmp_yesterday, and ISO.get_historical_lmp.

Supported LMP Markets

Markets
Midcontinent ISO REAL_TIME_5_MIN, DAY_AHEAD_HOURLY
California ISO REAL_TIME_15_MIN, REAL_TIME_HOURLY, DAY_AHEAD_HOURLY
PJM
Electric Reliability Council of Texas
Southwest Power Pool
New York ISO REAL_TIME_5_MIN, DAY_AHEAD_5_MIN
ISO New England REAL_TIME_5_MIN, REAL_TIME_HOURLY, DAY_AHEAD_HOURLY

Feedback Welcome

isodata is under active development. If there is any particular data you would like access to, let us know by posting an issue or emailing kmax12@gmail.com.

Related projects

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

isodata-0.6.0.tar.gz (22.5 kB view details)

Uploaded Source

Built Distribution

isodata-0.6.0-py3-none-any.whl (26.1 kB view details)

Uploaded Python 3

File details

Details for the file isodata-0.6.0.tar.gz.

File metadata

  • Download URL: isodata-0.6.0.tar.gz
  • Upload date:
  • Size: 22.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.13

File hashes

Hashes for isodata-0.6.0.tar.gz
Algorithm Hash digest
SHA256 b0ebb21e3c20c5c8af9b1b4c5aa15905fcfdb0bf6cf1155c21dbb94f324eab72
MD5 a83ff61c0f1299909974770d26da55f7
BLAKE2b-256 484b8eb9dc368ee7cedfc9cfdf877f0f8f1b9a148ea692f0451c9dd927f66d51

See more details on using hashes here.

File details

Details for the file isodata-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: isodata-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 26.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.13

File hashes

Hashes for isodata-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 18b7420311d143ff9c60eacccd157245e314c37b8924efcc1cc8e1a0cf35082c
MD5 0fb077a0f0e41ecc57575c2ed590de61
BLAKE2b-256 6b7b730c186a41cee6ee7fc7fd51189eeaedfe9cbd3e7e5901a0c3f004ba73cc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page