Skip to main content

extends the capability of truthiness evaluation beyond the standard Python truthiness rules to handle pandas DataFrames/Series and NumPy Arrays

Project description

extends the capability of truthiness evaluation beyond the standard Python truthiness rules to handle pandas DataFrames/Series and NumPy Arrays

pip install istruthy

Tested against Windows 10 / Python 3.10 / Anaconda

    Args:
        x: A value of any type.

    Returns:
        bool: True if the value is truthy, False otherwise. If an exception occurs while evaluating `x`,
              False is returned unless `x` is an empty sequence (e.g., an empty list, tuple, or string),
              in which case True is returned.



# Example
import pandas as pd
import numpy as np

v_bool = False
v_none = None
v_0_0 = 0
v_0_1 = 0.0
v_0_2 = 0j
empty_list = []
empty_tuple = ()
empty_dict = {}
empty_string = ""
empty_byte = b""
empty_bytearray = bytearray(b"")
empty_set = set()
empty_np_array = np.array([])

if not v_bool:
    print(f"1) {v_bool} is falsy")
    if not is_truthy(v_bool):
        print(f"2) {v_bool} is falsy")
else:
    print(f"1) {v_bool} is truthy")
    if is_truthy(v_bool):
        print(f"2) {v_bool} is truthy")
if not v_none:
    print(f"1) {v_none} is falsy")
    if not is_truthy(v_none):
        print(f"2) {v_none} is falsy")
else:
    print(f"1) {v_none} is truthy")
    if is_truthy(v_none):
        print(f"2) {v_none} is truthy")
if not v_0_0:
    print(f"1) {v_0_0} is falsy")
    if not is_truthy(v_0_0):
        print(f"2) {v_0_0} is falsy")
else:
    print(f"1) {v_0_0} is truthy")
    if is_truthy(v_0_0):
        print(f"2) {v_0_0} is truthy")
if not v_0_1:
    print(f"1) {v_0_1} is falsy")
    if not is_truthy(v_0_1):
        print(f"2) {v_0_1} is falsy")
else:
    print(f"1) {v_0_1} is truthy")
    if is_truthy(v_0_1):
        print(f"2) {v_0_1} is truthy")
if not v_0_2:
    print(f"1) {v_0_2} is falsy")
    if not is_truthy(v_0_2):
        print(f"2) {v_0_2} is falsy")
else:
    print(f"1) {v_0_2} is truthy")
    if is_truthy(v_0_2):
        print(f"2) {v_0_2} is truthy")
if not empty_list:
    print(f"1) {empty_list} is falsy")
    if not is_truthy(empty_list):
        print(f"2) {empty_list} is falsy")
else:
    print(f"1) {empty_list} is truthy")
    if is_truthy(empty_list):
        print(f"2) {empty_list} is truthy")
if not empty_tuple:
    print(f"1) {empty_tuple} is falsy")
    if not is_truthy(empty_tuple):
        print(f"2) {empty_tuple} is falsy")
else:
    print(f"1) {empty_tuple} is truthy")
    if is_truthy(empty_tuple):
        print(f"2) {empty_tuple} is truthy")
if not empty_dict:
    print(f"1) {empty_dict} is falsy")
    if not is_truthy(empty_dict):
        print(f"2) {empty_dict} is falsy")
else:
    print(f"1) {empty_dict} is truthy")
    if is_truthy(empty_dict):
        print(f"2) {empty_dict} is truthy")
if not empty_string:
    print(f"1) {empty_string} is falsy")
    if not is_truthy(empty_string):
        print(f"2) {empty_string} is falsy")
else:
    print(f"1) {empty_string} is truthy")
    if is_truthy(empty_string):
        print(f"2) {empty_string} is truthy")
if not empty_byte:
    print(f"1) {empty_byte} is falsy")
    if not is_truthy(empty_byte):
        print(f"2) {empty_byte} is falsy")
else:
    print(f"1) {empty_byte} is truthy")
    if is_truthy(empty_byte):
        print(f"2) {empty_byte} is truthy")
if not empty_bytearray:
    print(f"1) {empty_bytearray} is falsy")
    if not is_truthy(empty_bytearray):
        print(f"2) {empty_bytearray} is falsy")
else:
    print(f"1) {empty_bytearray} is truthy")
    if is_truthy(empty_bytearray):
        print(f"2) {empty_bytearray} is truthy")
if not empty_set:
    print(f"1) {empty_set} is falsy")
    if not is_truthy(empty_set):
        print(f"2) {empty_set} is falsy")
else:
    print(f"1) {empty_set} is truthy")
    if is_truthy(empty_set):
        print(f"2) {empty_set} is truthy")
print("----------------")
try:
    if not empty_np_array:
        print(f"1) {empty_np_array} is falsy")
        if not is_truthy(empty_np_array):
            print(f"2) {empty_np_array} is falsy")
    else:
        print(f"1) {empty_np_array} is truthy")
        if is_truthy(empty_np_array):
            print(f"2) {empty_np_array} is truthy")
except Exception:
    if not is_truthy(empty_np_array):
        print(f"2) {empty_np_array} is falsy")
    if is_truthy(empty_np_array):
        print(f"2) {empty_np_array} is truthy")

empty_np_array = pd.DataFrame()
try:
    if not empty_np_array:
        print(f"1) {empty_np_array} is falsy")
        if not is_truthy(empty_np_array):
            print(f"2) {empty_np_array} is falsy")
    else:
        print(f"1) {empty_np_array} is truthy")
        if is_truthy(empty_np_array):
            print(f"2) {empty_np_array} is truthy")
except Exception as fe:
    print(fe)
    if not is_truthy(empty_np_array):
        print(f"2) {empty_np_array} is falsy")
    if is_truthy(empty_np_array):
        print(f"2) {empty_np_array} is truthy")




1) False is falsy
2) False is falsy
1) None is falsy
2) None is falsy
1) 0 is falsy
2) 0 is falsy
1) 0.0 is falsy
2) 0.0 is falsy
1) 0j is falsy
2) 0j is falsy
1) [] is falsy
2) [] is falsy
1) () is falsy
2) () is falsy
1) {} is falsy
2) {} is falsy
1)  is falsy
2)  is falsy
1) b'' is falsy
2) b'' is falsy
1) bytearray(b'') is falsy
2) bytearray(b'') is falsy
1) set() is falsy
2) set() is falsy
----------------
1) [] is falsy
2) [] is falsy
The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
2) Empty DataFrame
Columns: []
Index: [] is falsy
C:\ProgramData\anaconda3\envs\dfdir\istruthy.py:149: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.
  if not empty_np_array:
C:\ProgramData\anaconda3\envs\dfdir\istruthy.py:24: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.
  if x:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

istruthy-0.12.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

istruthy-0.12-py3-none-any.whl (5.6 kB view details)

Uploaded Python 3

File details

Details for the file istruthy-0.12.tar.gz.

File metadata

  • Download URL: istruthy-0.12.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for istruthy-0.12.tar.gz
Algorithm Hash digest
SHA256 f422718e13b4dd1140e62ab8223938e9b5da9ae14ea577c881cb47a15fb16210
MD5 74e804a438a55a62c5f378de7cac59ca
BLAKE2b-256 1916c9419f52bda4c4fec8956bf231b1310128b24bf82f0b1c6742222b3d85ed

See more details on using hashes here.

File details

Details for the file istruthy-0.12-py3-none-any.whl.

File metadata

  • Download URL: istruthy-0.12-py3-none-any.whl
  • Upload date:
  • Size: 5.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for istruthy-0.12-py3-none-any.whl
Algorithm Hash digest
SHA256 5068ae626069831c1dc11e6f7e0c6796e5da820b9d704120382fa29db1f22e07
MD5 83096737083b2d5beb8af837113239fe
BLAKE2b-256 a4d4c77c203b604d002d86547b045651f41172265ede1cae4037b6a272a18411

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page