Automated Interpretation of Structural Copy Number Variants
Project description
ISV package
Python package for easy prediction of pathogenicity Copy Number Variants (CNVs)
The package contains a wrapper function:
isv.isv(cnvs, proba, shap)
which automatically annotates and predicts cnvs
provided in a list, np.array or pandas DataFrame format represented in 4 columns: chromosome
, start (grch38)
, end (grch38)
and cnv_type
- The
proba
parameter controls whether probabilities should be calculated - The
shap
parameter controls whether shap values should be calculated
and a Wrapper class (which is recommended):
isv.ISV(cnvs)
with methods:
- ISV.predict(proba)
- ISV.shap(data=None)
- where the
data
argument is optional
- where the
- ISV.waterfall(cnv_index)
- for creating an interactive waterfall plot for a CNV at index
cnv_index
- for creating an interactive waterfall plot for a CNV at index
The main subfunctions of the package are:
1. isv.annotate(cnvs)
- annotates cnvs provided in a list, np.array or pandas DataFrame format represented in 4 columns:
chromosome
,start (grch38)
,end (grch38)
andcnv_type
- Returns an annotated dataframe which can be used as an input to following two functions
2. isv.predict(annotated_cnvs, proba)
- returns an array of isv predictions.
annotated_cnvs
represents annotated cnvs returned by the annotate function
3. isv.shap_values(annotated_cnvs)
- calculates shap values for given CNVs.
annotated_cnvs
represents annotated cnvs returned by the annotate function
For example
- using the simple wrapper
from isv import isv
cnvs = [
["chr8", 100000, 500000, "DEL"],
["chrX", 52000000, 55000000, "DUP"]
]
results = isv(cnvs, proba=True, shap=True)
- using the ISV class
from isv import ISV
cnvs = [
["chr8", 100000, 500000, "DEL"],
["chrX", 52000000, 55000000, "DUP"]
]
cnv_isv = ISV(cnvs)
predictions = cnv_isv.predict(proba=True)
shap_vals = cnv_isv.shap()
cnv_isv.waterfall(cnv_index=1)
Can be also used as a command line tool. Make sure to:
1. clone the repository (https://github.com/tsladecek/isv_package)
2. install requirements, e.g.
virtualenv venv
source venv/bin/activate
pip install -r requirements.txt
3. Use ISV!
python isv_cmd.py -i <input_cnvs>.bed -o <outputpath> [-p] [-sv]
where the input should be a list of CNVs in a bed format, with columns: chromosome
, start (grch38)
, end (grch38)
and cnv_type
Results will be saved in a tab separated file at path specified by user
Optionally, use following flags:
- -p: whether probabilities should be returned
- -sv: whether shap values should be calculated
For example
python isv_cmd.py -i examples/loss_gain_cnvs.bed -o examples/loss_gain_cnvs_out.bed -p -sv
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
isv-0.3.8.tar.gz
(5.6 MB
view hashes)
Built Distribution
isv-0.3.8-py3-none-any.whl
(5.6 MB
view hashes)