Skip to main content

The iteach toolkit package includes the dhyolo model, designed to detect doors and handles in images.

Project description

iTeach Toolkit Package 🛠️

Overview 🔍

The iTeach_package is a toolkit designed for running object detection using the DH-YOLO model, specifically for identifying doors and handles in images. This package provides easy-to-use command-line tools for performing inference with a pre-trained DH-YOLO model.

Model Checkpoints 📥

Pretrained model checkpoints can be downloaded from this link.

Installation ⚙️

To install the package, use pip:

pip install iteach_toolkit

Usage 🖥️

Below is an example of how to use the package for running inference on an image.

import os
from PIL import Image as PILImg
from iteach_toolkit.DHYOLO import DHYOLODetector

# Set up paths
os.system("wget https://huggingface.co/spaces/IRVLUTD/DH-YOLO/resolve/main/test_imgs/jpad-irvl-test.jpg")
image_path = "./jpad-irvl-test.jpg"

model_path = "/path/to/yolov5_model.pt"

# Initialize the DHYOLODetector class
dhyolo = DHYOLODetector(model_path)

# Perform prediction on the image
orig_image, detections = dhyolo.predict(image_path, conf_thres=0.7, iou_thres=0.7, max_det=1000)

# Plot the bounding boxes on the original image
orig_image, image_with_bboxes = dhyolo.plot_bboxes(attach_watermark=True)

# Convert the image (with bounding boxes) from a NumPy array to a PIL Image for display.
pil_img_with_bboxes = PILImg.fromarray(image_with_bboxes)

# Plot the image
pil_img_with_bboxes.show()

License 📜

This project is licensed under the MIT License.

BibTex 📚

Please cite iTeach if it helps your work or research 🙌:

@misc{padalunkal2024iteach,
    title={iTeach: Interactive Teaching for Robot Perception using Mixed Reality},
    author={Jishnu Jaykumar P and Cole Salvato and Vinaya Bomnale and Jikai Wang and Yu Xiang},
    year={2024},
    eprint={2410.09072},
    archivePrefix={arXiv},
    primaryClass={cs.RO}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iteach_toolkit-0.0.3.tar.gz (2.5 kB view details)

Uploaded Source

Built Distribution

iteach_toolkit-0.0.3-py3-none-any.whl (2.4 kB view details)

Uploaded Python 3

File details

Details for the file iteach_toolkit-0.0.3.tar.gz.

File metadata

  • Download URL: iteach_toolkit-0.0.3.tar.gz
  • Upload date:
  • Size: 2.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.12

File hashes

Hashes for iteach_toolkit-0.0.3.tar.gz
Algorithm Hash digest
SHA256 29075b74ba55d176391d2b2d1a6a774610b5bb53689384ef91e1abb0fa74be22
MD5 ca27b91c9656f7eac85cd3f07e8d80f2
BLAKE2b-256 5baa96e84ba4b85a57460f4f5eaec4defce245fe0a19b767677a87670db2e8e2

See more details on using hashes here.

File details

Details for the file iteach_toolkit-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for iteach_toolkit-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 436b5df07fd1200da582aed87e2c6424b6cc9101483de7e6311b15ef9e0a77c2
MD5 de4c023ec5e4401ed8d48073699fa344
BLAKE2b-256 d97a42bd693f958aff6abdbd9a31824cd56ffbf535d828ed63e6e9ffbad665b5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page