Skip to main content

Package that provides scikit-learn compatible cross validators with stratification for multilabel data

Project description

This iterative-stratification project offers implementations of MultilabelStratifiedKFold, MultilabelRepeatedStratifiedKFold, and MultilabelStratifiedShuffleSplit with a base algorithm for stratifying multilabel data described in the following paper: Sechidis K., Tsoumakas G., Vlahavas I. (2011) On the Stratification of Multi-Label Data. In: Gunopulos D., Hofmann T., Malerba D., Vazirgiannis M. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2011. Lecture Notes in Computer Science, vol 6913. Springer, Berlin, Heidelberg.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iterative-stratification-0.1.2.tar.gz (1.6 kB view details)

Uploaded Source

File details

Details for the file iterative-stratification-0.1.2.tar.gz.

File metadata

File hashes

Hashes for iterative-stratification-0.1.2.tar.gz
Algorithm Hash digest
SHA256 886752a7b655e89816bd9cfc5cf02c26dd7aa39077318383b7a8ea1fcc69c2a7
MD5 f0bac6b02a46cdd81c2b6d3049392164
BLAKE2b-256 3a26e66b1106a2674d43d89242864f2fd5643b809f1dfb3491e2b9a0aef0e5c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page