Skip to main content

Package that provides scikit-learn compatible cross validators with stratification for multilabel data

Project description

This iterative-stratification project offers implementations of MultilabelStratifiedKFold, MultilabelRepeatedStratifiedKFold, and MultilabelStratifiedShuffleSplit with a base algorithm for stratifying multilabel data described in the following paper: Sechidis K., Tsoumakas G., Vlahavas I. (2011) On the Stratification of Multi-Label Data. In: Gunopulos D., Hofmann T., Malerba D., Vazirgiannis M. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2011. Lecture Notes in Computer Science, vol 6913. Springer, Berlin, Heidelberg.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iterative-stratification-0.1.4.tar.gz (5.8 kB view details)

Uploaded Source

File details

Details for the file iterative-stratification-0.1.4.tar.gz.

File metadata

File hashes

Hashes for iterative-stratification-0.1.4.tar.gz
Algorithm Hash digest
SHA256 10992499600d63c05f2b9f8a2d6f24b32cd26f0dd80aaf168eef296dcf485464
MD5 c1d97dc4a3a76297a2bae3cffad049e7
BLAKE2b-256 b64c1457871c2fd70b1679b7cd5b93a8639db6579bfbeb6c42552017903af47b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page