Classes to perturb mesh objects with Gaussian noise
Project description
itk-meshnoise provides classes to perturb mesh objects with Gaussian noise. Please refer to: Vigneault D., “Perturbing Mesh Vertices with Additive Gaussian Noise”, Insight Journal, January-December 2016, http://hdl.handle.net/10380/3567.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Filename, size | File type | Python version | Upload date | Hashes |
---|---|---|---|---|
Filename, size itk_meshnoise-0.0.1-cp35-cp35m-macosx_10_9_x86_64.whl (459.0 kB) | File type Wheel | Python version cp35 | Upload date | Hashes View |
Filename, size itk_meshnoise-0.0.1-cp35-cp35m-manylinux1_x86_64.whl (549.0 kB) | File type Wheel | Python version cp35 | Upload date | Hashes View |
Filename, size itk_meshnoise-0.0.1-cp35-cp35m-win_amd64.whl (308.8 kB) | File type Wheel | Python version cp35 | Upload date | Hashes View |
Filename, size itk_meshnoise-0.0.1-cp36-cp36m-macosx_10_9_x86_64.whl (459.0 kB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size itk_meshnoise-0.0.1-cp36-cp36m-manylinux1_x86_64.whl (549.0 kB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size itk_meshnoise-0.0.1-cp36-cp36m-win_amd64.whl (309.0 kB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size itk_meshnoise-0.0.1-cp37-cp37m-macosx_10_9_x86_64.whl (458.9 kB) | File type Wheel | Python version cp37 | Upload date | Hashes View |
Filename, size itk_meshnoise-0.0.1-cp37-cp37m-manylinux1_x86_64.whl (549.0 kB) | File type Wheel | Python version cp37 | Upload date | Hashes View |
Filename, size itk_meshnoise-0.0.1-cp37-cp37m-win_amd64.whl (309.3 kB) | File type Wheel | Python version cp37 | Upload date | Hashes View |
Filename, size itk_meshnoise-0.0.1-cp38-cp38-macosx_10_9_x86_64.whl (458.9 kB) | File type Wheel | Python version cp38 | Upload date | Hashes View |
Filename, size itk_meshnoise-0.0.1-cp38-cp38-manylinux1_x86_64.whl (548.7 kB) | File type Wheel | Python version cp38 | Upload date | Hashes View |
Filename, size itk_meshnoise-0.0.1-cp38-cp38-win_amd64.whl (310.6 kB) | File type Wheel | Python version cp38 | Upload date | Hashes View |
Close
Hashes for itk_meshnoise-0.0.1-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9f4e432c14e2b1f98ece7b7828a875348b718cdc65224df067a17c8475c6c705 |
|
MD5 | 2a22fb0452a6228dfd40c75302905d16 |
|
BLAKE2-256 | 53c26c51054b3fd1d58c23f53544a9afd6fcbab02810e1dfbf6b277a2bbe4332 |
Close
Hashes for itk_meshnoise-0.0.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6c32a227551efdd1366bc3d529020ba83e8c76c96047974464cd00008c5268f5 |
|
MD5 | dd68c5ec89342eea80a52b949db037c7 |
|
BLAKE2-256 | 83db6eb0dc8156be85f0f9926555cc6afeb58ed1b5857b7bec3f14f623efc9ef |
Close
Hashes for itk_meshnoise-0.0.1-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d379065a64708f964e2d29f54df21f541d04ccf1878a15b30b125758d5428611 |
|
MD5 | 012a050ce853375c3dbae6fcd0a65a25 |
|
BLAKE2-256 | 4d03acc576d1295a4679612576b8ac1b9d30d740ba9112d1b7479d464a8f8ddd |
Close
Hashes for itk_meshnoise-0.0.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 80591deb00efe5069f3b1803a197d8fad001f2182ee62a580e9fcd4113a670a2 |
|
MD5 | b3419795616aebb68dba2cd5e10237ff |
|
BLAKE2-256 | 742ffead77e56731a420de13daf391090c05328d597bd9c83bcd50058bb46436 |
Close
Hashes for itk_meshnoise-0.0.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 53197b9ac5fb1e19c12a277a782b98924b09d360f81e4e69fa86c618f9cd0698 |
|
MD5 | f3f1f34319a9daf8ed04d144eb46fb16 |
|
BLAKE2-256 | dcf1b1473466c7acfb2b01a852672b79c48583e746b661984e414893b96ff04e |
Close
Hashes for itk_meshnoise-0.0.1-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 615bcb4704f677421176c032ebccf59fd5588b0a197baacf8c6697f2bccd0bf0 |
|
MD5 | ad164b9f26b5d786c3d507e59007f867 |
|
BLAKE2-256 | ce1d232109468f9e1a3e483f858fb643ec0a13988f010392bcd4402c4d24f1e4 |
Close
Hashes for itk_meshnoise-0.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3a8af18a9ded0f78b53e8006c6e44aa2c7614c08d041bf7a49f43705aed0ba28 |
|
MD5 | 78a7c1898db094202efa2a36b17ac790 |
|
BLAKE2-256 | 13008da11cd22db2fec5cbef0fb3ed7069b5fcd43821500ca2248d9609a536d8 |
Close
Hashes for itk_meshnoise-0.0.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f936c20175d50e9db98d0723d919949f278076c26597aa4e4a5bdd0dacf2ef4f |
|
MD5 | a65a2cab8fe9e3ffe9f7af3467282f45 |
|
BLAKE2-256 | c792f8e4a95a2a5dbc59ca1dc0124820995369e3c55346fe0d43bc7d44a23e98 |
Close
Hashes for itk_meshnoise-0.0.1-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 50d5a37cefceac7de75ffdb1590c488e46683238b4a72486d636d1b08333cc73 |
|
MD5 | 56f1d7ef4d8cfa8a83385a9cf360b697 |
|
BLAKE2-256 | 86930bed09fcf985cb42ac25624e46725f03054a89b8e6daa15dc50bf6c8230e |
Close
Hashes for itk_meshnoise-0.0.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 22eaf980be40aa64c51978391922930aa4967391bdc549e7048402800ea80d1c |
|
MD5 | 908a8e5394090c9c452c93d98512dd2c |
|
BLAKE2-256 | b26f23abc67683ed0bbd9dc3527ee40769264d12d256e77a6e4e5ed032b0632b |
Close
Hashes for itk_meshnoise-0.0.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 484536f270b7df8091f855cc2f40611f99912b5a88f1d1f8cc8f67ac9c4550f0 |
|
MD5 | 4ea47b5f08218b5d1a27ee9753aba862 |
|
BLAKE2-256 | 8592edc11e2b359609cd99489cd0cf0bba8eb3d37ff9d8e534b5cc9bd679b13a |
Close
Hashes for itk_meshnoise-0.0.1-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2e48e6c25cae859ea84ce3539b0480f6fad44975da9b5f51ffeb849bc0c73773 |
|
MD5 | f8f406e68bc6c69620fe5a39f5c53bc9 |
|
BLAKE2-256 | 223535efd82a85a84c42e40e49b42e1b117989cc6c3e5e1efa396f2b4dc484ac |