ITK is an open-source toolkit for multidimensional image analysis
Project description
ITK is an open-source, cross-platform library that provides developers with an extensive suite of software tools for image analysis. Developed through extreme programming methodologies, ITK employs leading-edge algorithms for registering and segmenting multidimensional scientific images.
This package addresses the segmentation problem: partition the image into classified regions (labels). This is a high level package that makes use of many lower level packages.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Filename, size | File type | Python version | Upload date | Hashes |
---|---|---|---|---|
Filename, size itk_segmentation-5.0b1-cp27-cp27m-macosx_10_9_x86_64.whl (6.3 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size itk_segmentation-5.0b1-cp27-cp27m-manylinux1_x86_64.whl (6.5 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size itk_segmentation-5.0b1-cp27-cp27mu-manylinux1_x86_64.whl (6.5 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size itk_segmentation-5.0b1-cp35-cp35m-macosx_10_9_x86_64.whl (6.3 MB) | File type Wheel | Python version cp35 | Upload date | Hashes View |
Filename, size itk_segmentation-5.0b1-cp35-cp35m-manylinux1_x86_64.whl (6.5 MB) | File type Wheel | Python version cp35 | Upload date | Hashes View |
Filename, size itk_segmentation-5.0b1-cp35-cp35m-win_amd64.whl (4.1 MB) | File type Wheel | Python version cp35 | Upload date | Hashes View |
Filename, size itk_segmentation-5.0b1-cp36-cp36m-macosx_10_9_x86_64.whl (6.3 MB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size itk_segmentation-5.0b1-cp36-cp36m-manylinux1_x86_64.whl (6.5 MB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size itk_segmentation-5.0b1-cp36-cp36m-win_amd64.whl (4.1 MB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size itk_segmentation-5.0b1-cp37-cp37m-macosx_10_9_x86_64.whl (6.3 MB) | File type Wheel | Python version cp37 | Upload date | Hashes View |
Filename, size itk_segmentation-5.0b1-cp37-cp37m-manylinux1_x86_64.whl (6.5 MB) | File type Wheel | Python version cp37 | Upload date | Hashes View |
Filename, size itk_segmentation-5.0b1-cp37-cp37m-win_amd64.whl (4.1 MB) | File type Wheel | Python version cp37 | Upload date | Hashes View |
Close
Hashes for itk_segmentation-5.0b1-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c0d64b54422b31cd2a158404392b77858d7f7e63bf3fe372170c3d74b76b91bf |
|
MD5 | d6c3441c0dc8e215efa71c0ba487a6a2 |
|
BLAKE2-256 | 48347c92775782cd6f4a440eb77a3177f1066a21e1432eb0dff8dbbf08f50aad |
Close
Hashes for itk_segmentation-5.0b1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 09c560f5dbe51bdf80ebf0ff3963495afe0e9a5aa88691e425b5fd0d92b073be |
|
MD5 | c6f31a661a1ed4e93a52935096cc5fb0 |
|
BLAKE2-256 | 390119cd48c38c484b0c5a45d34f8cbb919b241eb1e9bc079928845c1fd77df9 |
Close
Hashes for itk_segmentation-5.0b1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c0b31ea385227da504c2ede4d26acfd09579f3c024c52ba44bb5c0dcd91c5382 |
|
MD5 | 45409f07e275098b1891da6b5e46e949 |
|
BLAKE2-256 | 64e8a05c405e3fa603c9d990da3b8b61649cbe2ee75cc31befe069c3f08cee72 |
Close
Hashes for itk_segmentation-5.0b1-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3c6646e8073f060be7c911f9d01ad8c34da8ef87fb37021047f832af33b4c04c |
|
MD5 | 75d8fe586cd061aa044e35f0576b48ee |
|
BLAKE2-256 | e3451301fb70379868dd28693a9151a669c23accd7c2e1457a092d1a27b0cffa |
Close
Hashes for itk_segmentation-5.0b1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4cdc8aee81bd833b3ed7dc4553b0a97d0c0b27771bbd07fe40507dda4b807dbc |
|
MD5 | 4eab3c3ef2a054a0ec234b7f88f1728d |
|
BLAKE2-256 | 00d7a45c791ed38d41b21209d1cc6ab46aaa9d1731ff4a184e897fbb3a3fa747 |
Close
Hashes for itk_segmentation-5.0b1-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d1ee22d28fb5e8d2d052994a443c2ee76e5fa9209da500ac3d0a1bd84c3ae7d7 |
|
MD5 | 9a9c63a4477567cb1940309a6594663a |
|
BLAKE2-256 | 16efbb33e4b41bd68d2fd55d75f5f2e28f7d4da6417e69dbd50258f8dce1423e |
Close
Hashes for itk_segmentation-5.0b1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2bb964f8c90b6c8c162c467d90070187d174f05bdb1055d0325c2175fcef2499 |
|
MD5 | 05d98bc3aa9098686d5497d010ac77dc |
|
BLAKE2-256 | 834f8671e4dc44be4d5f1ccc96947735c0e701048d116b7e4c535b41add44a99 |
Close
Hashes for itk_segmentation-5.0b1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6cf7bc4d0198e0b38f779f9f794a31b793e669f766ae532d8bcfff6f979d4fdd |
|
MD5 | 28739bc69acfd112f09a8f8055678b52 |
|
BLAKE2-256 | 1715d645b0aa2cb505299c4ab96da48b1425504f2534a713c525b87421420763 |
Close
Hashes for itk_segmentation-5.0b1-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 32e3938a127a296af32aa2534cb9e4560ddb5fff9ccc9125bf1e8011b028c8ca |
|
MD5 | fd8197a0469a0676c415d439cdb5ed2f |
|
BLAKE2-256 | cb1c309edd5162d7bd580fb2bcedf0e5787674ad102d67912222ea42b0f9a6ab |
Close
Hashes for itk_segmentation-5.0b1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a9bc2d04485044aa26622f88032f1a9565fc8457add30c98e80803ce6d973ed7 |
|
MD5 | 5352d9eabe3a400246581860c8e55175 |
|
BLAKE2-256 | 2b31a9716b357c042f1899774eaa8148ad91017230b0a57a37892bd8f4377a02 |
Close
Hashes for itk_segmentation-5.0b1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b5a52d382c99c44157993f03a9334f994bffc725064b9fd7c20703616f2e32fd |
|
MD5 | 4a44b6c253caf2d682dc46e179821ecb |
|
BLAKE2-256 | 7cc4cb9fc2a830558e0165ab687bb5e45416234e908b3db92e7544152504ceae |
Close
Hashes for itk_segmentation-5.0b1-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dce9c6b50fd9a56eac5ef33291b0b57ec290861c5ba7176dec8580feb375d7e6 |
|
MD5 | a093e43c327513a235fa01a68da7eead |
|
BLAKE2-256 | e0dbe2368d8fc8e1913fb40b43496df3003f8310117b2d0dbb655670fb532e19 |