ITK is an open-source toolkit for multidimensional image analysis
Project description
itk-segmentation
ITK is an open-source, cross-platform library that provides developers with an extensive suite of software tools for image analysis. Developed through extreme programming methodologies, ITK employs leading-edge algorithms for registering and segmenting multidimensional scientific images.
This package addresses the segmentation problem: partition the image into classified regions (labels). This is a high level package that makes use of many lower level packages.
ITK: The Insight Toolkit
C++ | Python | |
---|---|---|
Linux | ||
macOS | ||
Windows | ||
Linux (Code coverage) |
Links
About
The Insight Toolkit (ITK) is an open-source, cross-platform toolkit for N-dimensional scientific image processing, segmentation, and registration. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan in order to combine the information contained in both.
ITK is distributed in binary Python packages. To install:
pip install itk
or
conda install -c conda-forge itk
The cross-platform, C++ core of the toolkit may be built from source using CMake.
Copyright
NumFOCUS holds the copyright of this software. NumFOCUS is a non-profit entity that promotes the use of open source scientific software for educational and research purposes. NumFOCUS delegates project governance to the Insight Software Consortium Council, an educational consortium dedicated to promoting and maintaining open-source, freely available software for medical image analysis. This includes promoting such software in teaching, research, and commercial applications, and maintaining webpages and user and developer communities. ITK is distributed under a license that enables use for both non-commercial and commercial applications. See LICENSE and NOTICE files for details.
Citation
To cite ITK, please reference, as appropriate:
The papers
McCormick M, Liu X, Jomier J, Marion C, Ibanez L. ITK: enabling reproducible research and open science. Front Neuroinform. 2014;8:13. Published 2014 Feb 20. doi:10.3389/fninf.2014.00013
Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R. Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK – The Insight Toolkit. In Proc. of Medicine Meets Virtual Reality, J. Westwood, ed., IOS Press Amsterdam pp 586-592 (2002).
The books
Johnson, McCormick, Ibanez. "The ITK Software Guide: Design and Functionality." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-28-3.
Johnson, McCormick, Ibanez. "The ITK Software Guide: Introduction and Development Guidelines." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-27-6.
Specific software version
Once your work has been published, please create a pull request to add the publication to the ITKBibliography.bib file.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for itk_segmentation-5.1.0.post2-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5634ac830b2b5feb8b98a9dc4f60f4baf2cd6d6131aaea7a14532211ba01c7a6 |
|
MD5 | 852567169bca04e2fdee9b85eaf161f8 |
|
BLAKE2b-256 | e36b679ae7de73cbe20bea46ae25c656e469f4f7a53661c00deb1ad1285a09d6 |
Hashes for itk_segmentation-5.1.0.post2-cp38-cp38-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 32055ad1ab482b2ee5780f89ecceb1cbfa5fe133c6900aa16b9370960fa1aef0 |
|
MD5 | d43a8cc130084d6c4d99e06db57a0c72 |
|
BLAKE2b-256 | 4cc2ead6b91780ec6a3e7d419cf4629e2357cd1483af6129567a3d20cb1d7cc1 |
Hashes for itk_segmentation-5.1.0.post2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 208bdb58ffd317a1e9cf803259087fd3434be283380db86496fa747af02fafa1 |
|
MD5 | 1d6d9c687ffcf553aea3be8969e36400 |
|
BLAKE2b-256 | 0a676355105fc62b25275b2cae1a96205fa01603e0a904a80a0d04d3a1115a33 |
Hashes for itk_segmentation-5.1.0.post2-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 422c3792019e4f72cde743454341d077d5b3b82ee1aac4189a6c32842ba78319 |
|
MD5 | ce4909300db70c3b3a419752e9552854 |
|
BLAKE2b-256 | 0f47af594be1105eede896a2584c1428832dae9cb67797354e9b3b66c5e0ea30 |
Hashes for itk_segmentation-5.1.0.post2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f6fb3e654db75b1a5691834d4ebd8be2b8c6c4b9f6656644a119cfa6a89a10eb |
|
MD5 | b527b3d4d4bc0bf35e2e32cc87e50149 |
|
BLAKE2b-256 | f8e71dd0f236a55bb35062d0b1877a36d649149ffe683cfc41c4f0f9f7783044 |
Hashes for itk_segmentation-5.1.0.post2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f9dd2116a5cdc8672b4c2bdade286a6883cab41150408927d275eb37489b2575 |
|
MD5 | 895d4d01f1ee75b188762f023d711221 |
|
BLAKE2b-256 | 250d42dc69fb267e30b002b51d2a731868c884aaaeb25a38899f8e2ffbc03ec7 |
Hashes for itk_segmentation-5.1.0.post2-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7ccd9bbe9cc1a6db2c19636316d972034c414deb390f533218a32349094dce1c |
|
MD5 | 499ede7ab672d9227d913dcbe8637392 |
|
BLAKE2b-256 | 7a14d27b9662e9b5a46475f285aadfb1fc4922cf4e008bca70d5760ef9a3b2d7 |
Hashes for itk_segmentation-5.1.0.post2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 38cc909d6e1cbe320518d69600b081a930dd9a4fba6fbf10b844ff489776f017 |
|
MD5 | cf002dd3f428fc20f5d5c7d1b80e0019 |
|
BLAKE2b-256 | 0337eb60fd1ebe64df3202359c571b56278830d554dc3d5143562eb926e6f6e0 |
Hashes for itk_segmentation-5.1.0.post2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a1966425b3cb3be540b512ee5fb17a4a8df1f7c52162ee0440e32850555ae881 |
|
MD5 | 50cc549fbcf81eea95e1f99ce2df7e6b |
|
BLAKE2b-256 | efbdbe86e14859eba958aad738e76100fda7c7a996094a93a36d32bd2cfcec2c |
Hashes for itk_segmentation-5.1.0.post2-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4848e67a7a1bd8e1b80b89e40911faabc7473b769568fb168cddaed736888749 |
|
MD5 | 7b8265a5cf3d646c27b69a6d74ea5038 |
|
BLAKE2b-256 | faa85eead8d6d8384733c8cd7163800662bad311923deb8ae3826bdb5dfafdde |
Hashes for itk_segmentation-5.1.0.post2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | aea1a23f8a1511e89d15040f001af5c4645714a2f29615db15bb278f1413aa58 |
|
MD5 | 117bcfe68ba2e61d17a4ea0efa6a7d43 |
|
BLAKE2b-256 | 0026d00284f8e367fea34097697ca510c669da50e853c81061d1fa31179d441c |
Hashes for itk_segmentation-5.1.0.post2-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0f40aaf17304d5b0370b1297604fbd3d777d90e5d819735a8654ea9666121421 |
|
MD5 | c4dccde4d1dac56c72a1850151365978 |
|
BLAKE2b-256 | 874633d4323a43da6256a85ae95b5c8b2f7f51e198667c5c193958a4f32c8839 |