Skip to main content

ITK is an open-source toolkit for multidimensional image analysis

Project description

ITK - The Insight Toolkit

ITK: The Insight Toolkit

GitHub release PyPI Wheels License DOI Powered by NumFOCUS

C++ Python
Linux Build Status Build Status
Windows Build Status Build Status
macOS Build Status Build Status
macOS (Apple Silicon) ITK.macOS.Arm64
Linux (Code coverage) Build Status

Links

Note: For questions related to ITK, please use the official Discussion space: the issue tracker is reserved to track different aspects of the software development process, as highlighted by the available templates.

About

The Insight Toolkit (ITK) is an open-source, cross-platform toolkit for N-dimensional scientific image processing, segmentation, and registration. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan in order to combine the information contained in both.

The ITK project uses an open governance model and is fiscally sponsored by NumFOCUS. Consider making a tax-deductible donation to help the project pay for developer time, professional services, travel, workshops, and a variety of other needs.


ITK is distributed in binary Python packages. To install:

pip install itk

or

conda install -c conda-forge itk

The cross-platform, C++ core of the toolkit may be built from source using CMake.

Copyright

NumFOCUS holds the copyright of this software. NumFOCUS is a non-profit entity that promotes the use of open source scientific software for educational and research purposes. NumFOCUS delegates project governance to the Insight Software Consortium Council, an educational consortium dedicated to promoting and maintaining open-source, freely available software for medical image analysis. This includes promoting such software in teaching, research, and commercial applications, and maintaining webpages and user and developer communities. ITK is distributed under a license that enables use for both non-commercial and commercial applications. See LICENSE and NOTICE files for details.

Supporting ITK

ITK is a fiscally sponsored project of NumFOCUS, a non-profit dedicated to supporting the open source scientific computing community. If you want to support ITK's mission to develop and maintain open-source, reproducible scientific image analysis software for education and research, please consider making a donation to support our efforts.

NumFOCUS is 501(c)(3) non-profit charity in the United States; as such, donations to NumFOCUS are tax-deductible as allowed by law. As with any donation, you should consult with your personal tax adviser or the IRS about your particular tax situation.

Professional Services

Kitware provides professional services for ITK, including custom solution creation, collaborative research and development, development support, and training.

Citation

To cite ITK, please reference, as appropriate:

The papers

McCormick M, Liu X, Jomier J, Marion C, Ibanez L. ITK: enabling reproducible research and open science. Front Neuroinform. 2014;8:13. Published 2014 Feb 20. doi:10.3389/fninf.2014.00013

Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R. Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK – The Insight Toolkit. In Proc. of Medicine Meets Virtual Reality, J. Westwood, ed., IOS Press Amsterdam pp 586-592 (2002).

The books

Johnson, McCormick, Ibanez. "The ITK Software Guide: Design and Functionality." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-28-3.

Johnson, McCormick, Ibanez. "The ITK Software Guide: Introduction and Development Guidelines." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-27-6.

Specific software version

DOI

Once your work has been published, please create a pull request to add the publication to the ITKBibliography.bib file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

itk_segmentation-6.0a1-cp311-abi3-win_amd64.whl (5.0 MB view details)

Uploaded CPython 3.11+ Windows x86-64

itk_segmentation-6.0a1-cp311-abi3-manylinux_2_28_x86_64.whl (15.8 MB view details)

Uploaded CPython 3.11+ manylinux: glibc 2.28+ x86-64

itk_segmentation-6.0a1-cp311-abi3-manylinux_2_28_aarch64.whl (14.5 MB view details)

Uploaded CPython 3.11+ manylinux: glibc 2.28+ ARM64

itk_segmentation-6.0a1-cp311-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.11+ manylinux: glibc 2.17+ x86-64

itk_segmentation-6.0a1-cp311-abi3-macosx_11_0_arm64.whl (11.6 MB view details)

Uploaded CPython 3.11+ macOS 11.0+ ARM64

itk_segmentation-6.0a1-cp311-abi3-macosx_10_9_x86_64.whl (14.4 MB view details)

Uploaded CPython 3.11+ macOS 10.9+ x86-64

itk_segmentation-6.0a1-cp310-cp310-win_amd64.whl (4.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

itk_segmentation-6.0a1-cp310-cp310-manylinux_2_28_x86_64.whl (15.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

itk_segmentation-6.0a1-cp310-cp310-manylinux_2_28_aarch64.whl (14.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

itk_segmentation-6.0a1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

itk_segmentation-6.0a1-cp310-cp310-macosx_11_0_arm64.whl (11.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

itk_segmentation-6.0a1-cp310-cp310-macosx_10_9_x86_64.whl (14.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

itk_segmentation-6.0a1-cp39-cp39-win_amd64.whl (4.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

itk_segmentation-6.0a1-cp39-cp39-manylinux_2_28_x86_64.whl (15.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

itk_segmentation-6.0a1-cp39-cp39-manylinux_2_28_aarch64.whl (14.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

itk_segmentation-6.0a1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

itk_segmentation-6.0a1-cp39-cp39-macosx_11_0_arm64.whl (11.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

itk_segmentation-6.0a1-cp39-cp39-macosx_10_9_x86_64.whl (14.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file itk_segmentation-6.0a1-cp311-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for itk_segmentation-6.0a1-cp311-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 ca31ddcd62a82f43621c029263baf64c9d7aafb6ea89c20b72e6cba2600921a0
MD5 1c1422dc30b561ed7af6fdac3ff70024
BLAKE2b-256 2fe04c5b752be0b2fa79b8261d3c7c6bba8c833e975eb40f452cb978878645fa

See more details on using hashes here.

File details

Details for the file itk_segmentation-6.0a1-cp311-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-6.0a1-cp311-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8fd62fe90a011092e7bf2a35e49289d67a8ca884900c203dce665a75683b9250
MD5 90ba2d7ec0a6c74d1972bc8cf328cef5
BLAKE2b-256 6566df3460964144bb2d316a9531df11dbfac7ff12e61055aab9a3c273844352

See more details on using hashes here.

File details

Details for the file itk_segmentation-6.0a1-cp311-abi3-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_segmentation-6.0a1-cp311-abi3-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d718a8ab0474091ae533cb78746253dcba23d4b8d5e9dae698557f2f1dd97041
MD5 6294d3038b4225cc40c8d32e88d6c4f6
BLAKE2b-256 c33183c1ebf84cf40250d1c3e91b6f1ee66f0778f866cc2c6737ba496ce643df

See more details on using hashes here.

File details

Details for the file itk_segmentation-6.0a1-cp311-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-6.0a1-cp311-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ccd17a9b40c717c61d0ed25bdb19a19f329d0ba8662b92a86207c0665c28666d
MD5 6d1df445da9316ea6bf6538df1143c86
BLAKE2b-256 0564b21ab9979786602584872c86222f15d57f89b3fdbf6f477c1a1bdb49a21d

See more details on using hashes here.

File details

Details for the file itk_segmentation-6.0a1-cp311-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_segmentation-6.0a1-cp311-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 09affa2fc2cd64bcc298c4c844ae3ce24bf7da8e2b14384f5d7072386302480c
MD5 c1f463436c6822f6b4bf5eb8902d4ec0
BLAKE2b-256 9665ab26b80782bfea8bd92fc94390b097b155ff1e78e76a83c0a2d89e9571a8

See more details on using hashes here.

File details

Details for the file itk_segmentation-6.0a1-cp311-abi3-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-6.0a1-cp311-abi3-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9b68c854b64208796facb4b6023971d9266ddf59eedc3455bfeaee1875eb5a93
MD5 e252b10b127d39c6e1a6a9a143bf2e42
BLAKE2b-256 b0197254721051db2c33dda7d5a326fae64c5d107160022bab1c8dac72e522c4

See more details on using hashes here.

File details

Details for the file itk_segmentation-6.0a1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for itk_segmentation-6.0a1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 328db5a27a22e27d5229f060832647cce97bc53a1793850e96781cd9f7899cf8
MD5 ad1950154e7f4b56c8dab6be3f1a3665
BLAKE2b-256 1296004d7ad1780854344f9ad918bd744ccc292ad15a9c8f89e16a98318afbbb

See more details on using hashes here.

File details

Details for the file itk_segmentation-6.0a1-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-6.0a1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 96901ceef4218b96efa47f05b2b4d690da5b626f2047f1736bf4dc5dcdcc9d20
MD5 0d9aaaa3617ab0e4ebcb212dc6abf0de
BLAKE2b-256 4bc9c6d70634f844f18aa8f587831262f6d05a65b295d36cf5c03ffd9046db3a

See more details on using hashes here.

File details

Details for the file itk_segmentation-6.0a1-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_segmentation-6.0a1-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7dfd449c4a2c1f9b94eeb343b43ba7f83d1727f80d4285e9f77f688b531afc44
MD5 b8de03093e92d599ff79dc54f8ad8803
BLAKE2b-256 fa3e6f9f8194cb582ebafd252516bb0e92442de03a25c3827b432a332f32fa96

See more details on using hashes here.

File details

Details for the file itk_segmentation-6.0a1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-6.0a1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8aee1f4cecb7b705e133f801abc789558177a48add77582bb1403283748fb732
MD5 6f405102160abfa9628c89a66a346c71
BLAKE2b-256 9f7e07f967b8a21a1be5ec6c018951a10295e8c27a556638ad6be41ba45b5e87

See more details on using hashes here.

File details

Details for the file itk_segmentation-6.0a1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_segmentation-6.0a1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 54b62b019ec477c53a02314d1cb07a9706fcaf73118ddce23744c80387b13c76
MD5 ab3152600b7beee265502f9e1b879141
BLAKE2b-256 f1fd7fafe99ddd99b1953eab9dfe387408917f443a5d86fe93415f4a64cabe37

See more details on using hashes here.

File details

Details for the file itk_segmentation-6.0a1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-6.0a1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 117d88f0b70b83194d91f0038c6ecc9b27a369a9f3405aec9931662061615c65
MD5 d5a57bbc2e9ab90a03e91cdac50219e1
BLAKE2b-256 c15fb6e24bd09eaebe8a4367b7da29d580bce8e7bd8ac346b5bac6833b1a3c3e

See more details on using hashes here.

File details

Details for the file itk_segmentation-6.0a1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for itk_segmentation-6.0a1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 db63e5b279b9bd90f64be416ff25efece49c9570813beb67bda5fd138e69e82a
MD5 30d4ef02293fd207d3df3a011356d49a
BLAKE2b-256 9d62c7932a82e5dfd828bb4e65af1ba8d42535ed2451ee5a148df2cb1f64f750

See more details on using hashes here.

File details

Details for the file itk_segmentation-6.0a1-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-6.0a1-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 01375f98e373a84b40b787aee19f28772191338c990fecc98b0e981bf2830b38
MD5 435ffef24fa81cac4589b46e1b6f0cad
BLAKE2b-256 087bd7ed30a4590b8a7e89423985f4b3f5cff13779b08ff28593c5c6dd56328e

See more details on using hashes here.

File details

Details for the file itk_segmentation-6.0a1-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk_segmentation-6.0a1-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ab067b0f19e97333f9c0068738a383d5174ae855172e1d57dd9a53ac81f18ad1
MD5 b95179a4430bd4e56ce0b10d6e437a98
BLAKE2b-256 68edc5ed6351309afdaa5af5015fdd0b4eda374846d022e7dafe2cd442cb8fd2

See more details on using hashes here.

File details

Details for the file itk_segmentation-6.0a1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-6.0a1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 17229b86f64534a296534078c85f8276c5661d8aef06bfb1a41ddcca3cf52c6d
MD5 69f0471fda233c11001b0569e6c1cbe6
BLAKE2b-256 370fb478430c9521bc9f6c914a7b4eb8659e779f1c628b4ee8f98cc40fc3acbd

See more details on using hashes here.

File details

Details for the file itk_segmentation-6.0a1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk_segmentation-6.0a1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 757cffe908ef98ec274d47d489094058f98af8b13779fda5afcc0d5786809904
MD5 ff289c630a32d57ba8a723e9655d2399
BLAKE2b-256 cfedc84e2f857c122b796c02365034a1fe74bc7bddbd4fc04a1ee99e20cd5341

See more details on using hashes here.

File details

Details for the file itk_segmentation-6.0a1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk_segmentation-6.0a1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2239d80cff8d817bfa6db44957b50ea12dc6f2bc483c18853ca95364d813cb9d
MD5 653e1d5064e0810ed50f023b5452ebd5
BLAKE2b-256 150574048d464fd225fa90a835b6857d1ba1afce00cc975585160ff70e5e272a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page