Skip to main content

ITK is an open-source toolkit for multidimensional image analysis

Project description

itk

ITK is an open-source, cross-platform library that provides developers with an extensive suite of software tools for image analysis. Developed through extreme programming methodologies, ITK employs leading-edge algorithms for registering and segmenting multidimensional scientific images.

ITK - The Insight Toolkit

ITK: The Insight Toolkit

GitHub release PyPI Wheels License DOI Powered by NumFOCUS

C++ Python
Linux Build Status Build Status
macOS Build Status Build Status
Windows Build Status Build Status
Linux (Code coverage) Build Status

Links

About

The Insight Toolkit (ITK) is an open-source, cross-platform toolkit for N-dimensional scientific image processing, segmentation, and registration. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan in order to combine the information contained in both.

The ITK project uses an open governance model and is fiscally sponsored by NumFOCUS. Consider making a tax-deductible donation to help the project pay for developer time, professional services, travel, workshops, and a variety of other needs.


ITK is distributed in binary Python packages. To install:

pip install itk

or

conda install -c conda-forge itk

The cross-platform, C++ core of the toolkit may be built from source using CMake.

Copyright

NumFOCUS holds the copyright of this software. NumFOCUS is a non-profit entity that promotes the use of open source scientific software for educational and research purposes. NumFOCUS delegates project governance to the Insight Software Consortium Council, an educational consortium dedicated to promoting and maintaining open-source, freely available software for medical image analysis. This includes promoting such software in teaching, research, and commercial applications, and maintaining webpages and user and developer communities. ITK is distributed under a license that enables use for both non-commercial and commercial applications. See LICENSE and NOTICE files for details.

Supporting ITK

ITK is a fiscally sponsored project of NumFOCUS, a non-profit dedicated to supporting the open source scientific computing community. If you want to support ITK's mission to develop and maintain open-source, reproducible scientific image analysis software for education and research, please consider making a donation to support our efforts.

NumFOCUS is 501(c)(3) non-profit charity in the United States; as such, donations to NumFOCUS are tax-deductible as allowed by law. As with any donation, you should consult with your personal tax adviser or the IRS about your particular tax situation.

Professional Services

Kitware provides professional services for ITK, including custom solution creation, collaborative research and development, development support, and training.

Citation

To cite ITK, please reference, as appropriate:

The papers

McCormick M, Liu X, Jomier J, Marion C, Ibanez L. ITK: enabling reproducible research and open science. Front Neuroinform. 2014;8:13. Published 2014 Feb 20. doi:10.3389/fninf.2014.00013

Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R. Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK – The Insight Toolkit. In Proc. of Medicine Meets Virtual Reality, J. Westwood, ed., IOS Press Amsterdam pp 586-592 (2002).

The books

Johnson, McCormick, Ibanez. "The ITK Software Guide: Design and Functionality." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-28-3.

Johnson, McCormick, Ibanez. "The ITK Software Guide: Introduction and Development Guidelines." Fourth Edition. Published by Kitware, Inc. 2015 ISBN: 9781-930934-27-6.

Specific software version

DOI

Once your work has been published, please create a pull request to add the publication to the ITKBibliography.bib file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

itk-5.3.0-cp311-cp311-win_amd64.whl (8.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

itk-5.3.0-cp311-cp311-manylinux_2_28_x86_64.whl (8.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

itk-5.3.0-cp311-cp311-manylinux_2_28_aarch64.whl (8.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

itk-5.3.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (8.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

itk-5.3.0-cp311-cp311-macosx_11_0_arm64.whl (8.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

itk-5.3.0-cp311-cp311-macosx_10_9_x86_64.whl (8.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

itk-5.3.0-cp310-cp310-win_amd64.whl (8.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

itk-5.3.0-cp310-cp310-manylinux_2_28_x86_64.whl (8.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

itk-5.3.0-cp310-cp310-manylinux_2_28_aarch64.whl (8.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

itk-5.3.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (8.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

itk-5.3.0-cp310-cp310-macosx_11_0_arm64.whl (8.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

itk-5.3.0-cp310-cp310-macosx_10_9_x86_64.whl (8.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

itk-5.3.0-cp39-cp39-win_amd64.whl (8.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

itk-5.3.0-cp39-cp39-manylinux_2_28_x86_64.whl (8.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

itk-5.3.0-cp39-cp39-manylinux_2_28_aarch64.whl (8.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

itk-5.3.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (8.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

itk-5.3.0-cp39-cp39-macosx_11_0_arm64.whl (8.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

itk-5.3.0-cp39-cp39-macosx_10_9_x86_64.whl (8.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

itk-5.3.0-cp38-cp38-win_amd64.whl (8.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

itk-5.3.0-cp38-cp38-manylinux_2_28_x86_64.whl (8.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

itk-5.3.0-cp38-cp38-manylinux_2_28_aarch64.whl (8.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

itk-5.3.0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (8.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

itk-5.3.0-cp38-cp38-macosx_10_9_x86_64.whl (8.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

itk-5.3.0-cp37-cp37m-win_amd64.whl (8.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

itk-5.3.0-cp37-cp37m-manylinux_2_28_x86_64.whl (8.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

itk-5.3.0-cp37-cp37m-manylinux_2_28_aarch64.whl (8.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ ARM64

itk-5.3.0-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (8.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

itk-5.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (8.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file itk-5.3.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: itk-5.3.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 8.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.2

File hashes

Hashes for itk-5.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8731e867e23a11848dd6e6e2d0a061045bdd94b1a02e38be509b41eaf69cfba7
MD5 c7e14716258abaa5d7a6638f648f06cc
BLAKE2b-256 b4ccd8ca361edd359e7150d4787bc5da7bd0194a230ac0599321d2e0aa054e7a

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ba8361a8ed1c5462e690ee893f624c0babb7a1072a15609c26790eea717e3f77
MD5 32e81aa534b8fc5073dc800bfd88ebc5
BLAKE2b-256 20ea37a4006c86b15b17bae0736fe9dd8ffaaf425131ccf1e5ac9414677215af

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 42dff624b8e29abe0ab5341ea5c150f4fda99918d1654f06fc722d733eeaad42
MD5 f97fed9be9f45dabeec384775d93d574
BLAKE2b-256 73b81108555a5e53b26532075fb23b8deeafd3363992d25fc7389c4e83e4f680

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 fb186a97fe8d80f40d0058fa630be87b0e81b403dea3cfabaa8e809882fe2822
MD5 df30831b18b952edabffdd88055044b9
BLAKE2b-256 48495c0275fac7513434b2ff85afb495e2c408f4fc216f616914c09f4cf2a94c

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2ec92b1afbc1375477b80f9ec09aa4e9b005d0a439a9242b1371e00e78471ceb
MD5 7dd0547c944224464dc1f00f8b0940a8
BLAKE2b-256 a068eda078fde467125ebefb8131325c8179a79aef26df71e4560e1097613c2d

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9dcfd9721ff6022e91eb98dc4004d437de2912dfd50d707d1ee72b89c334a3d4
MD5 a1b280dcfefec34f57bd0a2fbffbd6e1
BLAKE2b-256 442ac83f71898ec3cda5ab232c2bcebcc7932624d3f88512158380d42cacf98d

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: itk-5.3.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 8.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.2

File hashes

Hashes for itk-5.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 09f34acac79a5f1ddb3456a74cbe19d04f897ce62450413feb41434e885ce502
MD5 97c876c35906df659fc6c235d659591b
BLAKE2b-256 62ba70dcf8eda4916774c15a822dfc4ee5aebf4bb75616e7a8aafdae1c709de6

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 272708ee5ed5d09a519b2e98ac9c130f3146630257506ea440c83501c16f9580
MD5 692fc02b7dd28c02255b66306e412f1f
BLAKE2b-256 91b8488763e7d78bb79c97b5cf2a6d0bd719714894e2f3663e881fc1ec5e89d5

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 da04af4ab07efe3e8235dbc8d72abfd8255888bb17d97088679854abc931e56a
MD5 d68214efbbf5e9346d984caa4e466681
BLAKE2b-256 09653e8ede3c26cc0872ffcad10eb8f5b9f49df0e3cf3d5cd186513c6241a836

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 22005a57bd777246c57590d89a6bb7dc004855e4f656a66eed02d395ad13ad6a
MD5 046b47df59114f77f19056457df85640
BLAKE2b-256 603dfc496e65d3e8c1693db09a347b75b9355ca17de25a4fc13b796595af5bca

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 90b21c6f53027302bf74b411a062a4161d7a3d92ebbdac99857d7c23d55a2034
MD5 ef03b0d74750449f0518676c82a99718
BLAKE2b-256 5d9168f8ae3f95e54bf867839570340b008392f0a6e9696c36b5f1fb67aa18dd

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f92ec860173c82eb458764b4b5b771783b690c3aa3a01d15c6f3d008fc2bb493
MD5 fb48b01f3f4ef041f5685276a0767bc7
BLAKE2b-256 aa260516a48a465886064ae6ff290dd9c6cd65eba2deb797f9bf3b79a3ea6511

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: itk-5.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 8.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.2

File hashes

Hashes for itk-5.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f376693f2a5fcc799047012b21509b73d0d41055f4cd5a92521d2c1a3e41a5ac
MD5 185dd8407cc4dcfaac89b3c3114fa9bf
BLAKE2b-256 4a38720b879a18aa596441142865d7460ed4b4d6cb8fd265b9b2381883011efc

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 bcc4449f2df35224cbc26472475d2afeb8a92886a81db950b2305f911bc2a38c
MD5 0ad73a406e0861287795db64b6d5f888
BLAKE2b-256 0f083c30af7306a70c99cff496c2745aa18c9aab235a5102102c14ef671afd9e

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 3376b859da3c926f74fc616cbf42e813c5998b210c059cb7f6a2fd665369aacd
MD5 d69d11d1b64108c6634616e9ed840af2
BLAKE2b-256 ef8c5ce35ea9f1a0635acf63966c89c0debaff83be097cc9760d2a10c276bf6b

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 41990d514a32bbefd9e1ce897cb7689d1ce568c140a112bce18213570612a433
MD5 41905b90f02e368f5a000910a91aa474
BLAKE2b-256 b6f6dd005f71debdab5bde9b11518b5f13a812b74dd37410305e70aff9d24e4c

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e25803a186a71515732e5d05291e4a33e49fae617a6b869ba8717699aa6109a0
MD5 dce8a315048a1b7313c7f4e9fff519b2
BLAKE2b-256 faf7f36b9e9474dd013fb57e5a4566b1188a87720a4c3022b5295916febe0e09

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 155581581929dfe834af6c6233a8c83e2ca2b1f52d6c7b2c81f04dc249aab1a5
MD5 e4fd9890cf189a40349616f6d6db0496
BLAKE2b-256 d90c62736a98cc1832bb8cf57e7690b535188ca855f7fb0215829106362c214a

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: itk-5.3.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 8.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.2

File hashes

Hashes for itk-5.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5804692e0b0c188104efcc33b92a16f494ddb9752554c403b64ca8e2c29c5395
MD5 a95c05f796bc6ccf3ff868e2795370e4
BLAKE2b-256 b44756a093c500ec4ea8cd32ae25108535fa2911216b2236bbdd6c09832e1ad3

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d83dc2b0f5d673226ef6eacac012d1da6dd36c6126f2b3cffc7ed62231c29bf2
MD5 b7d7f3f4b9ba3b49732225275802c869
BLAKE2b-256 95e3d005a60385f19250583ef3845591bc4107ff8d1d48833e7dd7bc954ef202

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1577cc952a6dfd6c3e39745827d46e06b0933e77fb280fb7214a367a3d787420
MD5 6b58db3ecc39ee0c361707f318398e60
BLAKE2b-256 c3d7c6497a421b089a3657ce298f0b0a4ba4dc3dce6dc4bfa9effbb3488405c7

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 049be9c76d66121064e4f8ddbc4793e24d086d5d5574aa38d9a3cd6e0a4526d5
MD5 edf570860e9cc17f03f14369816dea6b
BLAKE2b-256 22d00541d7edd38ff6d5d321c80c8ca7b968e81ac121ad2ead48476576d9f5de

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1fbcde6f6612b13d2934722707fd7194b1d5900a655efa191dfc130bbb94df09
MD5 0239a795653ad3db063b8bd87b878618
BLAKE2b-256 0274d87d77f2d0ffef0315fcf7070214fc3bf901d348609ffb74bf149ca9b557

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: itk-5.3.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 8.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.2

File hashes

Hashes for itk-5.3.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3046c84bd3cdb9a31b284d153a6e24ee5e1ef9b47dbc72e68d1805fc011ad127
MD5 f7301bff2badfef7b1ea6945e578e3af
BLAKE2b-256 c8976536d326db0cc47b804c7f2213557f2e2f32c57adb54bb6a5ab4d8881424

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 265c8b28469164a45fd9d94c211b2ed017acc7cda7a9e74bbb20b38c49c1af61
MD5 6611887f8a3bbc46ee15885bf0e9488b
BLAKE2b-256 d06714fc95c57afe5c5c01ac8016fcafa812eb8fd0a213496929209364666b9b

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp37-cp37m-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp37-cp37m-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 814b1f2ecf8d3befa5d55ce901b2d2357e0999272dbe0cc3c13afb2db0757c8c
MD5 d7fea13e4b7653987efad4a6039c1d95
BLAKE2b-256 dcd25e4f1d7363a3b1fa79bce442e21dc8264386e0b5e2361c7617d2e0d1b013

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 73225da2c88884906e701d614a229f81f79d3829179b47bbfd9c251aed652b03
MD5 bc1178a3858a58e637fa50ae46f733fb
BLAKE2b-256 750dde127a67b0b1ec35167ca9b7fe0c55bf93db915873821928ca51bf2020d9

See more details on using hashes here.

File details

Details for the file itk-5.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for itk-5.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 493e28a3c9f38502f82613fa6ab9855fb19bff671095c287100a441830a921d0
MD5 acdf22366b8c544ee382b5a1dcaf9206
BLAKE2b-256 fb17bec5005cc34d9b105c45e9ddf0704964496ffe2323fca08b66d96d3788f6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page