Skip to main content

Artificial neural network-driven visualization of high-dimensional data using triplets.

Project description

DOI DOI Documentation Status Downloads Build Status

ivis

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets. Ivis is designed to reduce dimensionality of very large datasets using a siamese neural network trained on triplets. Both unsupervised and supervised modes are supported.

ivis 10M data points

Installation

Ivis runs on top of TensorFlow. To install the latest ivis release from PyPi running on the CPU TensorFlow package, run:

# TensorFlow 2 packages require a pip version >19.0.
pip install --upgrade pip
pip install ivis[cpu]

If you have CUDA installed and want ivis to use the tensorflow-gpu package, run

pip install ivis[gpu]

Development version can be installed directly from from github:

git clone https://github.com/beringresearch/ivis
cd ivis
pip install -e '.[cpu]'

The following optional dependencies are needed if using the visualization callbacks while training the Ivis model:

  • matplotlib
  • seaborn

Upgrading

Ivis Python package is updated frequently! To upgrade, run:

pip install ivis --upgrade

Features

  • Scalable: ivis is fast and easily extends to millions of observations and thousands of features.
  • Versatile: numpy arrays, sparse matrices, and hdf5 files are supported out of the box. Additionally, both categorical and continuous features are handled well, making it easy to apply ivis to heterogeneous problems including clustering and anomaly detection.
  • Accurate: ivis excels at preserving both local and global features of a dataset. Often, ivis performs better at preserving global structure of the data than t-SNE, making it easy to visualise and interpret high-dimensional datasets.
  • Generalisable: ivis supports addition of new data points to original embeddings via a transform method, making it easy to incorporate ivis into standard sklearn Pipelines.

And many more! See ivis readme for latest additions and examples.

Examples

from ivis import Ivis
from sklearn.preprocessing import MinMaxScaler
from sklearn import datasets

iris = datasets.load_iris()
X = iris.data
X_scaled = MinMaxScaler().fit_transform(X)

model = Ivis(embedding_dims=2, k=15)

embeddings = model.fit_transform(X_scaled)

Copyright 2020 Bering Limited

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ivis-2.0.1.tar.gz (20.7 kB view details)

Uploaded Source

File details

Details for the file ivis-2.0.1.tar.gz.

File metadata

  • Download URL: ivis-2.0.1.tar.gz
  • Upload date:
  • Size: 20.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9

File hashes

Hashes for ivis-2.0.1.tar.gz
Algorithm Hash digest
SHA256 2afcbf0e258f88fa05f3463a2eee1aff1b573abe2d7a2be3c8d0060354814f42
MD5 3cff6610cd2e6db6cf2b14383e0097f3
BLAKE2b-256 40016950681dc47cb28b39bbe3278038a20e41e571cc0531450bbff36456f555

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page