Skip to main content

🦜 Synthetic Voice Detection

Project description

Jabberjay

🦜 Synthetic Voice Detection

Models

Vision Transformer

Name Model Dataset Visualisation Model
MattyB95/VIT-ASVspoof2019-ConstantQ-Synthetic-Voice-Detection ViT ASVspoof2019 ConstantQ Hugging Face
MattyB95/VIT-ASVspoof2019-Mel_Spectrogram-Synthetic-Voice-Detection ViT ASVspoof2019 MelSpectrogram Hugging Face
MattyB95/VIT-ASVspoof2019-MFCC-Synthetic-Voice-Detection ViT ASVspoof2019 MFCC Hugging Face
MattyB95/VIT-ASVspoof5-ConstantQ-Synthetic-Voice-Detection ViT ASVspoof5 ConstantQ Hugging Face
MattyB95/VIT-ASVspoof5-Mel_Spectrogram-Synthetic-Voice-Detection ViT ASVspoof5 MelSpectrogram Hugging Face
MattyB95/VIT-ASVspoof5-MFCC-Synthetic-Voice-Detection ViT ASVspoof5 MFCC Hugging Face
MattyB95/VIT-VoxCelebSpoof-ConstantQ-Synthetic-Voice-Detection ViT VoxCelebSpoof ConstantQ Hugging Face
MattyB95/VIT-VoxCelebSpoof-Mel_Spectrogram-Synthetic-Voice-Detection ViT VoxCelebSpoof MelSpectrogram Hugging Face
MattyB95/VIT-VoxCelebSpoof-MFCC-Synthetic-Voice-Detection ViT VoxCelebSpoof MFCC Hugging Face

Audio Spectrogram Transformer

Name Model Dataset Model
MattyB95/AST-ASVspoof2019-Synthetic-Voice-Detection AST ASVspoof2019 Hugging Face
MattyB95/AST-ASVspoof5-Synthetic-Voice-Detection AST ASVspoof5 Hugging Face
MattyB95/AST-VoxCelebSpoof-Synthetic-Voice-Detection AST VoxCelebSpoof Hugging Face

Other

Name Paper Codebase Model
Classical Placeholder Placeholder Placeholder
RawNet2 End-to-End anti-spoofing with RawNet2 rawnet2-antispoofing pre_trained_DF_RawNet2.zip

Usage

Command Line Interface

usage: Jabberjay [-h] [-m {AST,Classical,RawNet2,VIT}]
                 [-d {ASVspoof2019,ASVspoof5,VoxCelebSpoof}]
                 [-vis {ConstantQ,MelSpectrogram,MFCC}] [-v]
                 audio

Python API

from Jabberjay.Utilities.enum_handler import Visualisation, Model, Dataset
from Jabberjay.jabberjay import Jabberjay

jabberjay = Jabberjay()

bonafide = jabberjay.load(filename="../res/bonafide/bonafide.flac")
spoof = jabberjay.load(filename="../res/spoof/spoof.flac")

jabberjay.detect(audio=bonafide, model=Model.VIT, visualisation=Visualisation.ConstantQ, dataset=Dataset.VoxCelebSpoof)
jabberjay.detect(audio=spoof, model=Model.VIT, visualisation=Visualisation.ConstantQ, dataset=Dataset.VoxCelebSpoof)

Contributing to Jabberjay

🌟 We value your contributions!

Whether you're fixing a bug, improving the documentation, or proposing a new feature, we're delighted to have you as part of the Jabberjay community. Your efforts help us make Synthetic Voice Detection even better for everyone.

We especially welcome and encourage additional models for speech deepfake (bonafide vs. spoof) detection, with the aim of making Jabberjay the one-stop shop for state-of-the-art models in the field.

We are truly grateful for your interest in improving Jabberjay. Your contributions, no matter how big or small, make our open-source community a vibrant place to learn, inspire, and create.

Let's make Jabberjay the best tool for Synthetic Voice Detection together! 🚀

Acknowledgement

This work was supported, in whole or in part, by the Bill & Melinda Gates Foundation [INV-001309].

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jabberjay-0.0.4.tar.gz (204.3 kB view details)

Uploaded Source

Built Distribution

jabberjay-0.0.4-py3-none-any.whl (14.5 kB view details)

Uploaded Python 3

File details

Details for the file jabberjay-0.0.4.tar.gz.

File metadata

  • Download URL: jabberjay-0.0.4.tar.gz
  • Upload date:
  • Size: 204.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for jabberjay-0.0.4.tar.gz
Algorithm Hash digest
SHA256 7fe8bc67f124f095bd22b39ed29344d0909578c29a6d905e82d5a60f813f165a
MD5 9b2f5469e13102873ff0a1ee02e7f4f1
BLAKE2b-256 cfa7d0875a4d097ef7767ff3457c1b1cdf155f61661b6e86b45dc54d47ea94ef

See more details on using hashes here.

File details

Details for the file jabberjay-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: jabberjay-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 14.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for jabberjay-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 4d41b9d3676e83342a921ed9691e6380dd08d590eac7f15a025bb9bd9de2267b
MD5 64a005a632dc173b688175894449fc21
BLAKE2b-256 24033b849f4ff5eb3681106e730a2d4998eefb7c75bfbb3ea188c5ab8573e52f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page