JAC (JSON as CSV) Format Conversion
Project description
JAC (JSON as CSV) Format
The JAC format makes it easy to convert to and from JSON and CSV file formats, while giving application developers a lot of flexibility to customize how easy it is to modify the CSV file for end users. Any JSON object can be represented as a JAC CSV.
.jac.csv
files are always valid CSVs.
An example JAC file is shown below:
path | . | name | dogs.0 | dogs.1 |
---|---|---|---|---|
myName | John | |||
friends.0 | Stacy | Rufus | ||
friends.1 | Paul | Mr. Fluffs | Whimpers |
When this file is converted into JSON, it becomes:
{
"myName": "John",
"friends": [
{
"name": "Stacy",
"dogs": ["Rufus"]
},
{
"name": "Paul",
"dogs": ["Mr. Fluffs", "Whimpers"]
}
]
}
Usage with Javascript
npm install jac-format
const JAC = require("jac-format")
let csvString = JAC.toCSV(
{
fruit: [{ name: "apple" }, { name: "lemon" }],
},
{
rows: ["fruit.0", "fruit.1"], // optional
columns: ["name"], // optional
}
)
// "path,name\r\nfruit.0,apple\r\nfruit.1,lemon"
// ┌───┬───────────┬─────────┐
// │ │ A │ B │
// ├───┼───────────┼─────────┤
// │ 1 │ 'path' │ 'name' │
// │ 2 │ 'fruit.0' │ 'apple' │
// │ 3 │ 'fruit.1' │ 'lemon' │
// └───┴───────────┴─────────┘
// You can also use this
JAC.toJSON(csvString)
// > { "fruit": [{ "name": "apple" }, { "name": "lemon" }] }
// JAC.fromCSV === JAC.toJSON
// JAC.fromJSON === JAC.toCSV
Usage with Python
pip install jac_format
import jac_format as jac
csv_string = jac.to_csv(
{
"fruit": [{ "name": "apple" }, { "name": "lemon" }],
},
rows=["fruit.0", "fruit.1"],
columns=["name"]
)
# > csv_string
# "path,name\r\nfruit.0,apple\r\nfruit.1,lemon"
# ┌───┬───────────┬─────────┐
# │ │ A │ B │
# ├───┼───────────┼─────────┤
# │ 1 │ 'path' │ 'name' │
# │ 2 │ 'fruit.0' │ 'apple' │
# │ 3 │ 'fruit.1' │ 'lemon' │
# └───┴───────────┴─────────┘
jac.to_json(csv_string)
# { "fruit": [{ "name": "apple" }, { "name": "lemon" }] }
Rules
- JAC CSV files are valid RFC4180 CSVs
jac_csv_path
orpath
is the first column, first cell- The first column contains the first path segment (except for the
jac_csv_path
cell) - The first row (header) contains the second path segment (except for the
jac_csv_path
cell) - Each value cell of a JAC CSV can be
-
- an empty cell
-
- a string
-
- a JSON object
-
- null
-
- a number
-
- a JSON array
-
- Columns right of the "path" column are applied in order from left to right. Each row creates an object. This object is then set at the path of the first column.
- A path can be traversed with either square bracket notation or dot notation
- In dot notation, the usage of a number indicates the index of an array (
a["1"].0
is equivalent toa["1"][0]
) - If an array has undefined values, those values are set to
null
- A value cell's path is constructed by taking the leftmost cell of of a row (in the path column) and appending the topmost header to it
Automatic Indexing with "*"
Automatic indexing makes it easier to add and delete rows because index numbers don't need to be adjusted.
These tables are equivalent when converted to JSON:
path | . | name | dogs.* | dogs.* |
---|---|---|---|---|
myName | John | |||
friends.* | Stacy | Rufus | ||
friends.* | Paul | Mr. Fluffs | Whimpers |
path | . | name | dogs.0 | dogs.1 |
---|---|---|---|---|
myName | John | |||
friends.0 | Stacy | Rufus | ||
friends.1 | Paul | Mr. Fluffs | Whimpers |
If "*" are replaced by the smallest index in the path segment that's not already taken. There are two appropriate syntaxes, "[*]" or ".*". For a row, only the path segments in the row are considered (i.e. the header is converted into indicies without any information from the path
column).
You can also use the *
to refer to the last object created matching the prefix preceding the star. The example below is equivalent to the two tables above.
path | . | name |
---|---|---|
myName | John | |
friends.* | Stacy | |
friends.*.dogs.0 | Rufus | |
friends.* | Paul | |
friends.*.dogs.0 | Mr. Fluffs | |
friends.*.dogs.1 | Whimpers |
Pros & Cons
- The flexibility of the JAC CSV format allows applications that output JAC CSV to give the user CSV data in a "flattening" that is most convenient for the application i.e. Columns can be created to make it easy for the user to modify the data.
- As a result of the flexibility in the JAC CSV format, one JSON file can have almost an infinite amount of CSV variations.
- Column order matters because it determines how the CSV is merged back into JSON
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file jac_format-0.1.4.tar.gz
.
File metadata
- Download URL: jac_format-0.1.4.tar.gz
- Upload date:
- Size: 9.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a5872303469fe29b04b3564d4dcba5b33a927f95ff993fc8cb1a2b9e0fb4ba82 |
|
MD5 | dd96ab7375163e04a2edbc3804c20668 |
|
BLAKE2b-256 | 716740d60d059560b948f0616dac4a6898e43a280319d47003183e71e0ecd84b |