Skip to main content

JAC (JSON as CSV) Format Conversion

Project description

JAC (JSON as CSV) Format

The JAC format makes it easy to convert to and from JSON and CSV file formats, while giving application developers a lot of flexibility to customize how easy it is to modify the CSV file for end users. Any JSON object can be represented as a JAC CSV.

.jac.csv files are always valid CSVs.

An example JAC file is shown below:

path . name dogs.0 dogs.1
myName John
friends.0 Stacy Rufus
friends.1 Paul Mr. Fluffs Whimpers

When this file is converted into JSON, it becomes:

{
  "myName": "John",
  "friends": [
    {
      "name": "Stacy",
      "dogs": ["Rufus"]
    },
    {
      "name": "Paul",
      "dogs": ["Mr. Fluffs", "Whimpers"]
    }
  ]
}

Usage with Javascript

npm install jac-format

const JAC = require("jac-format")

let csvString = JAC.toCSV(
  {
    fruit: [{ name: "apple" }, { name: "lemon" }],
  },
  {
    rows: ["fruit.0", "fruit.1"], // optional
    columns: ["name"], // optional
  }
)
// "path,name\r\nfruit.0,apple\r\nfruit.1,lemon"
// ┌───┬───────────┬─────────┐
// │   │     A     │    B    │
// ├───┼───────────┼─────────┤
// │ 1 │  'path'   │ 'name'  │
// │ 2 │ 'fruit.0' │ 'apple' │
// │ 3 │ 'fruit.1' │ 'lemon' │
// └───┴───────────┴─────────┘

// You can also use this
JAC.toJSON(csvString)
// > { "fruit": [{ "name": "apple" }, { "name": "lemon" }] }

// JAC.fromCSV === JAC.toJSON
// JAC.fromJSON === JAC.toCSV

Usage with Python

pip install jac_format

import jac_format as jac

csv_string = jac.to_csv(
  {
    "fruit": [{ "name": "apple" }, { "name": "lemon" }],
  },
  rows=["fruit.0", "fruit.1"],
  columns=["name"]
)

# > csv_string
# "path,name\r\nfruit.0,apple\r\nfruit.1,lemon"
# ┌───┬───────────┬─────────┐
# │   │     A     │    B    │
# ├───┼───────────┼─────────┤
# │ 1 │  'path'   │ 'name'  │
# │ 2 │ 'fruit.0' │ 'apple' │
# │ 3 │ 'fruit.1' │ 'lemon' │
# └───┴───────────┴─────────┘

jac.to_json(csv_string)
# { "fruit": [{ "name": "apple" }, { "name": "lemon" }] }

Rules

  • JAC CSV files are valid RFC4180 CSVs
  • jac_csv_path or path is the first column, first cell
  • The first column contains the first path segment (except for the jac_csv_path cell)
  • The first row (header) contains the second path segment (except for the jac_csv_path cell)
  • Each value cell of a JAC CSV can be
      1. an empty cell
      1. a string
      1. a JSON object
      1. null
      1. a number
      1. a JSON array
  • Columns right of the "path" column are applied in order from left to right. Each row creates an object. This object is then set at the path of the first column.
  • A path can be traversed with either square bracket notation or dot notation
  • In dot notation, the usage of a number indicates the index of an array (a["1"].0 is equivalent to a["1"][0])
  • If an array has undefined values, those values are set to null
  • A value cell's path is constructed by taking the leftmost cell of of a row (in the path column) and appending the topmost header to it

Automatic Indexing with "*"

Automatic indexing makes it easier to add and delete rows because index numbers don't need to be adjusted.

These tables are equivalent when converted to JSON:

path . name dogs.* dogs.*
myName John
friends.* Stacy Rufus
friends.* Paul Mr. Fluffs Whimpers
path . name dogs.0 dogs.1
myName John
friends.0 Stacy Rufus
friends.1 Paul Mr. Fluffs Whimpers

If "*" are replaced by the smallest index in the path segment that's not already taken. There are two appropriate syntaxes, "[*]" or ".*". For a row, only the path segments in the row are considered (i.e. the header is converted into indicies without any information from the path column).

You can also use the * to refer to the last object created matching the prefix preceding the star. The example below is equivalent to the two tables above.

path . name
myName John
friends.* Stacy
friends.*.dogs.0 Rufus
friends.* Paul
friends.*.dogs.0 Mr. Fluffs
friends.*.dogs.1 Whimpers

Pros & Cons

  1. The flexibility of the JAC CSV format allows applications that output JAC CSV to give the user CSV data in a "flattening" that is most convenient for the application i.e. Columns can be created to make it easy for the user to modify the data.
  2. As a result of the flexibility in the JAC CSV format, one JSON file can have almost an infinite amount of CSV variations.
  3. Column order matters because it determines how the CSV is merged back into JSON

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jac_format-0.1.4.tar.gz (9.6 kB view details)

Uploaded Source

File details

Details for the file jac_format-0.1.4.tar.gz.

File metadata

  • Download URL: jac_format-0.1.4.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.3

File hashes

Hashes for jac_format-0.1.4.tar.gz
Algorithm Hash digest
SHA256 a5872303469fe29b04b3564d4dcba5b33a927f95ff993fc8cb1a2b9e0fb4ba82
MD5 dd96ab7375163e04a2edbc3804c20668
BLAKE2b-256 716740d60d059560b948f0616dac4a6898e43a280319d47003183e71e0ecd84b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page