Skip to main content

A Python package for creating simple AI Agents using the OpenAI API.

Project description

jAIms

My name is Bot, jAIMs Bot. 🕶️

jAIms is a lightweight Python framework built on top of the OpenAI library that lets you create powerful LLM agents. It is designed with simplicity and ease of use in mind and only depends on openai and tiktoken.

Installation

pip install jaims-py

👨‍💻 Usage

Building an agent is as simple as this:

from jaims import JAImsAgent

agent = JAImsAgent()

response = agent.run([
    {
        "role": "user",
        "content": "Hi!"
    }
])

print(response)

The parameters accepted by the run method are those specified in the official OpenAI docs.

⚙️ Functions

Of course, an agent is just a chatbot if it doesn't support functions. jAIms uses the built-in OpenAI function feature to call functions you pass to it. Here's an example where we create a simple sum function and make a simple agent that lets you sum two numbers:

import jaims


def sum(a: int, b: int):
    return a + b

# this is a class that wraps your function, it will 
# receive the actual function plus all the info required 
# by the llm to invoke it.
func_wrapper = JAImsFuncWrapper(
    function=sum, 
    name="sum", 
    description="use this function when the user wants to sum two numbers",
    params_descriptors=[
        JAImsParamDescriptor(
            name="a",
            description="first operand",
            json_type=JAImsJsonSchemaType.NUMBER,
        ),
        JAImsParamDescriptor(
            name="b",
            description="second operand",
            json_type=JAImsJsonSchemaType.NUMBER,
        ),
    ],
)

# instantiate the agent passing the functions
agent = JAImsAgent(
    functions=[func_wrapper],
    model=JAImsGPTModel.GPT_3_5_TURBO_16K,
)

# a simple loop that simulates a chatbot
while True:
    user_input = input("> ")
    if user_input == "exit":
        break
    response = agent.run(
        [{"role": "user", "content": user_input}],
        stream=True,
    )

    for chunk in response:
        print(chunk, end="", flush=True)
        
        print("\n")

✨ Other features

  • Complete control over openai call parameters (temperature, top_p, n, max_tokens, etc.)
  • Automatic chat history management
  • Configuration of the OpenAI model to use
  • Injectable prompt to shape agent behavior
  • Safety checks to prevent the agent from endlessly looping over function calls

I will routinely update the examples to demonstrate more advanced features. Also, I've made sure to document the code as best as I can; everything should be self-explanatory; I plan to add a proper documentation in the future if this project gets enough traction.

🤖 Supported models

Currently, jAIms supports the new OpenAI models with functions enabled, specifically:

  • gpt-3.5-turbo-0613
  • gpt-3.5-turbo-16k-0613
  • gpt-4-0613

I'm not planning to add support for non-OpenAI models at the moment, but contributions are always appreciated.

⚠️ Project status

This is a work in progress. I still need to write some tests and add many features, but the core functionality is there. I'm creating this framework because I need a lightweight and easy-to-use framework to create LLM agents. This project may not be as advanced as tools like langchain and others, but if you need a simple tool to create agents based on the OpenAI API, you might find jAIms useful.

TODOS:

  • Add tests
  • Add more examples
  • Add more chat history optimization strategies
  • Add function calling callbacks
  • Add history persistance

📝 License

The license will be MIT, but I need to add this properly.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jaims-py-1.0.0b5.tar.gz (16.2 kB view details)

Uploaded Source

Built Distribution

jaims_py-1.0.0b5-py3-none-any.whl (16.9 kB view details)

Uploaded Python 3

File details

Details for the file jaims-py-1.0.0b5.tar.gz.

File metadata

  • Download URL: jaims-py-1.0.0b5.tar.gz
  • Upload date:
  • Size: 16.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for jaims-py-1.0.0b5.tar.gz
Algorithm Hash digest
SHA256 e9ed854c769c30574bca1a5aedc7b67e82d8374c03ca94ed89e59add573a45eb
MD5 272471cc0f05a5d7529969dc115d45e6
BLAKE2b-256 595c7f02ddfaf6d237a6d208b64710d90f4a68dd8e8503ff88b8a68a7da8ce2d

See more details on using hashes here.

File details

Details for the file jaims_py-1.0.0b5-py3-none-any.whl.

File metadata

  • Download URL: jaims_py-1.0.0b5-py3-none-any.whl
  • Upload date:
  • Size: 16.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for jaims_py-1.0.0b5-py3-none-any.whl
Algorithm Hash digest
SHA256 30426137018a84a14a526a912125173969523c54f4719a52bb7793870778afd7
MD5 dfdd2f9046c6fa0778efe9da20f8854c
BLAKE2b-256 4a3c5cd86374b2db7721a55b7aecff6c4898895dee545a897de553bda8e897f6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page