Skip to main content

A Pandas extension to make work with Jalali Date easier.

Project description

HitCount PyPI - Downloads PyPI version Code style: black codecov License: GPL v3 Open In Colab GitHub Repo stars

Jalali Pandas Extentsion

A pandas extension that solves all problems of Jalai/Iraninan/Shamsi dates

Jalali Pandas python package

Features

Series Extenstion

  • Convert string to Jalali date 1388/03/25 --> jdatetime(1388,3,25,0,0)
  • Convert gregorian date to Jalali date datetime(2019,11,17,0,0) --> jdatetime(1398,8,26,0,0)
  • Convert Jalali date to gregorian date jdatetime(1398,10,18,0,0) --> datetim(2020,1,8,6,19)

DataFrame extenstion

  • Support grouping by Jalali date
  • Group by year, month, days, ...
  • Shortcuts for groups: ymd for ['year','month','day'] and more
  • Resampling: Convenience method for frequency conversion and resampling of time series but in Jalali dateformat. (comming soon)

Installation

pip install -U jalali-pandas

Usage

Just import jalali-pandas and use pandas just use .jalali as a method for series and dataframes. Nothin outside pandas.

jalali-pandas is an extentsion for pandas, that add a mehtod for series/columns and dataframes.

Series

import pandas as pd
import jalali_pandas

# create dataframe
df = pd.DataFrame({"date": pd.date_range("2019-01-01", periods=10, freq="D")})

# convert to jalali
df["jdate"] = df["date"].jalali.to_jalali()

# convert to gregorian
df["gdate"] = df["jdate"].jalali.to_gregorian()

# parse string to jalali
df1 = pd.DataFrame({"date": ["1399/08/02", "1399/08/03", "1399/08/04"]})
df1["jdate"] = df1["date"].jalali.parse_jalali("%Y/%m/%d")


# get access to jalali year,quarter ,month, day and weekday
df['year'] = df["jdate"].jalali.year
df['month'] = df["jdate"].jalali.month
df['quarter'] = df["jdate"].jalali.quarter
df['day'] = df["jdate"].jalali.day
df['weekday'] = df["jdate"].jalali.weekday

DataFrame

import pandas as pd
import jalali_pandas

df = pd.DataFrame(
    {
    "date": pd.date_range("2019-01-01", periods=10, freq="M"),
    "value": range(10),
    }
)
# make sure to create a column with jalali datetime format. (you can use any name)
df["jdate"] = df["date"].jalali.to_jalali()


# group by jalali year
gp = df.jalali.groupby("year")
gp.sum()

#group by month
mean = df.jalali.groupby('mean')

#groupby year and month and day
mean = df.jalali.groupby('ymd')
# or
mean = df.jalali.groupby(['year','month','day'])


#groupby year and quarter
mean = df.jalali.groupby('yq')
# or
mean = df.jalali.groupby(['year','quarter'])

راهنمای فارسی

برای مطالعه راهنمای فارسی استفاده از کتابخانه به این آدرس مراجعه کنید.

معرفی بسته pandas-jalali | آموزش کار با تاریخ شمسی در pandas معرفی بسته pandas-jalali | آموزش کار با تاریخ شمسی در pandas

راهنمای ویدیویی

IMAGE ALT TEXT HERE

ToDos:

  • add gregorian to Jalali Conversion
  • add Jalali to gregorian Conversion
  • add support for sampling
  • add date parser from other columns
  • add date parser from string

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jalali_pandas-0.2.2.tar.gz (17.0 kB view hashes)

Uploaded source

Built Distribution

jalali_pandas-0.2.2-py3-none-any.whl (17.2 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page