Skip to main content

A library for Korean Jamo split and vectorize.

Project description

Build Status GitHub Tag PyPI version Python version License

A library for Korean Jamo split and vectorize.

Install

pip install jamotools

Unicode of Korean

According to the Version 9.0.0 database of the Unicode Consortium, the blocks specified in Hangul (Korean) in Unicode are as follows.

  • Hangul Jamo: 1100 ~ 11FF

  • WON SIGN in Currency Symbols: 20A9

  • HANGUL DOT TONE MARK in CJK Symbols and Punctuation: 302E ~ 302F

  • Hangul Compatibility Jamo : 3130 ~ 318F

  • Hangul in Enclosed CJK Letters and Months: 3200 ~ 321E, 3260 ~ 327F

  • Hangul Jamo Extended-A : A960 ~ A97F

  • Hangul Syllables : AC00 ~ D7AF

  • Hangul Jamo Extended-B : D7B0 ~ D7FF

  • Halfwidth Hangul variants in Halfwidth and Fullwidth Forms: FFA0 ~ FFDC

  • FULLWIDTH WON SIGN in Halfwidth and Fullwidth Forms: FFE6

Jamo

Hangul is made of basic letters called Jamo. In unicode, Jamo is defined by several kinds which contain old Hangul that does not use in nowadays. Jamotools only supports modern Hangul Jamo area as follows.

  • Hangul Jamo: Consist of Choseong, Jungseong, Jongseong. It is divided mordern Hangul and old Hangul that does not use in nowadays. Jamotools supports modern Hangul Jamo area.

    • 1100 ~ 1112 (Choseong)

    • 1161 ~ 1175 (Jungseong)

    • 11A8 ~ 11C2 (Jongseong)

  • Hangul Compatibility Jamo: It is a Korean Hangul language area that is compatible with the Hangul character standard (KS X 1001). It is not divided Choseong, Jungseong, Jongseong.

    • 3131 ~ 3163 (modern Hangul Jamo area)

  • Halfwidth Hangul variants: This is the Korean half-width symbol area. Only modern Korean Jamo exists. The general Korean Hangul characterization method is the full-width.

    • FFA1 ~ FFDC

Manipulating Korean Jamo

API for split syllables and join jamos to syllable is based on hangul-utils.

  • split_syllables: Converts a string of syllables to a string of jamos, can be select which convert unicode type.

  • join_jamos: Converts a string of jamos to a string of syllables.

  • normalize_to_compat_jamo: Normalize a string of jamos to a string of Hangul Compatibility Jamo.

>>> import jamotools
>>> print(jamotools.split_syllable_char(u"안"))
('ㅇ', 'ㅏ', 'ㄴ')

>>> print(jamotools.split_syllables(u"안녕하세요"))
ㅇㅏㄴㄴㅕㅇㅎㅏㅅㅔㅇㅛ

>>> sentence = u"앞 집 팥죽은 붉은 팥 풋팥죽이고, 뒷집 콩죽은 햇콩 단콩 콩죽.우리 집
    깨죽은 검은  깨죽인데 사람들은 햇콩 단콩 콩죽 깨죽 죽먹기를 싫어하더라."
>>> s = jamotools.split_syllables(sentence)
>>> print(s)
ㅇㅏㅍ ㅈㅣㅂ ㅍㅏㅌㅈㅜㄱㅇㅡㄴ ㅂㅜㄺㅇㅡㄴ ㅍㅏㅌ ㅍㅜㅅㅍㅏㅌㅈㅜㄱㅇㅣㄱㅗ,
ㄷㅟㅅㅈㅣㅂ ㅋㅗㅇㅈㅜㄱㅇㅡㄴ ㅎㅐㅅㅋㅗㅇ ㄷㅏㄴㅋㅗㅇ ㅋㅗㅇㅈㅜㄱ.ㅇㅜㄹㅣ
ㅈㅣㅂ ㄲㅐㅈㅜㄱㅇㅡㄴ ㄱㅓㅁㅇㅡㄴ ㄲㅐ ㄲㅐㅈㅜㄱㅇㅣㄴㄷㅔ ㅅㅏㄹㅏㅁㄷㅡㄹㅇㅡㄴ
ㅎㅐㅅㅋㅗㅇ ㄷㅏㄴㅋㅗㅇ ㅋㅗㅇㅈㅜㄱ ㄲㅐㅈㅜㄱ ㅈㅜㄱㅁㅓㄱㄱㅣㄹㅡㄹ
ㅅㅣㅀㅇㅓㅎㅏㄷㅓㄹㅏ.

>>> sentence2 = jamotools.join_jamos(s)
>>> print(sentence2)
  팥죽은 붉은  풋팥죽이고, 뒷집 콩죽은 햇콩 단콩 콩죽.우리  깨죽은 검은 
깨죽인데 사람들은 햇콩 단콩 콩죽 깨죽 죽먹기를 싫어하더라.

>>> print(sentence == sentence2)
True

Jamotools’ API supports multiple unicode area of Hangul Jamo for manipulating. Also consists of additional API for manipulating Korean jamo.

>>> sentence = u"자모"

>>> jamos1 = jamotools.split_syllables(sentence, jamo_type="JAMO")
>>> print([hex(ord(c)) for c in jamos1])
['0x110C', '0x1161', '0x1106', '0x1169']
>>> sentence1 = jamotools.join_jamos(jamos1)
>>> print(sentence1)
안녕하세요. hello 1

>>> jamos2 = jamotools.split_syllables(sentence, jamo_type="COMPAT")
>>> print([hex(ord(c)) for c in jamos2])
['0x3148', '0x314F', '0x3141', '0x3157']
>>> sentence2 = jamotools.join_jamos(jamos2)
>>> print(sentence2)
안녕하세요. hello 1

>>> jamos3 = jamotools.split_syllables(sentence, jamo_type="HALFWIDTH")
>>> print([hex(ord(c)) for c in jamos3])
['0xFFB8', '0xFFC2', '0xFFB1', '0xFFCC']
>>> sentence3 = jamotools.join_jamos(jamos3)
>>> print(sentence3)
안녕하세요. hello 1

>>> print(sentence == sentence1 == sentence2 == sentence3)
True

>>> normalize1 = jamotools.normalize_to_compat_jamo(jamos1)
>>> normalize2 = jamotools.normalize_to_compat_jamo(jamos2)
>>> normalize3 = jamotools.normalize_to_compat_jamo(jamos3)
>>> print(jamos1 == jamos2 == jamos3)
False
>>> print(normalize1 == normalize2 == normalize3)
True

Vectorize Korean Jamo

Jamotools support vectorize function following RULE. Each RULE is defined how split sentence to Jamo and convert which type of symbols. It can be used character-level Korean text processing.

  • Vectorizationer: Class for vectorize text by Rule and pad.

>>> v = jamotools.Vectorizationer(rule=jamotools.rules.RULE_1, \
                                  max_length=None, \
                                  prefix_padding_size=0)
>>> print(v.vectorize(u"안녕"))
[13, 21, 45,  4, 27, 62]

Custom RULE

Jamotools can add user’s custom RULE class as following steps.

  1. Make custom RULE class which inherit RuleBase (e.g. Rule2) in rules.py like Rule1.

  2. Add constant for custom RULE like RULE_1.

  3. Modify get_rule function to return custom RULE class.

Then it can be use as same as RULE_1 usage.

>>> v = jamotools.Vectorizationer(rule=jamotools.rules.RULE_2, \
                                  max_length=None, \
                                  prefix_padding_size=0)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jamotools-0.1.10.tar.gz (23.9 kB view details)

Uploaded Source

Built Distribution

jamotools-0.1.10-py2.py3-none-any.whl (13.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file jamotools-0.1.10.tar.gz.

File metadata

  • Download URL: jamotools-0.1.10.tar.gz
  • Upload date:
  • Size: 23.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for jamotools-0.1.10.tar.gz
Algorithm Hash digest
SHA256 b3dc212ae4fc8dd63ec3ab666c98a6390ac5d28d0adba356ed89360c2d2fb115
MD5 2bc2ca8c3649352cbd5c9d146c62b82a
BLAKE2b-256 29bce1cf5a51b739eab1cc157b892052c491642fa54a0d938390340ef3180c91

See more details on using hashes here.

File details

Details for the file jamotools-0.1.10-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for jamotools-0.1.10-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 2974f7be1a18dfbb392f02a1dfff1900cae3e3fd27d4b56c1d973f148b40ef3f
MD5 09c9195d8151a7e4b4372d23c94f6f57
BLAKE2b-256 3dd6ec13c68f7ea6a8085966390d256d183bf8488f8b9770028359acb86df643

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page