Skip to main content

Data Object Mapping

Project description

Jangli

Scope

  • Data Definition
  • Data mapping

Convert json to python object

Convert json or dict to model object.

Supports

  • dict
  • json
  • json dumps
from jangli.json_to_object import json_to_obj

data = '{"password": "123456", "id": 1, "name": "john"}'



class Student:
    def __init__(self):
        self.id = None
        self.name = None
        self.password = None


s = json_to_obj(data, Student)
print(s.name)

Convert json to python object with static variable

Convert json or dict to model object. Class containing static variables

Supports

  • dict
  • json
  • json dumps
from jangli.json_to_object import json_to_obj

data_2 = '{"password": "123456", "id": 1, "name": "john", "school" : "SOHS"}'


class Student:
    school = None

    def __init__(self):
        self.id = None
        self.name = None
        self.password = None


s2 = json_to_obj(data_2, Student)
print(s2.school)

Custom object list

Create list of similar object. Pass a model which you want create a list. It only allows model objects which model passed whle creating list of objects.

from jangli.list_of_object import ListObject


class A:
    def __init__(self, b):
        self.b = b


lt = ListObject(A)
lt.append(A(7))
lt.insert(1, A(8))

print(lt)

Output : [<__main__.A object at 0x00CA3730>, <__main__.A object at 0x00CC6E10>]

Case Change to CamelCase

Converter snack case to camel case.

from jangli.case_type import CamelCase


@CamelCase
class NewClass:

    def __init__(self):
        self.a = 7
        self.b = "hi"
        self.c = True
        self._from = None


new = NewClass()

print(new.__dict__)

String of None to None

Change string of None to None,

EX :

String of None is : x = 'None'

After change : x = None

from jangli.checker.none_checker import NoneChecker

@NoneChecker
class A:

    def __init__(self):
        self.b = 8
        self.c = "None"
        self.d = True


print(A().__dict__)
>>> {'b': 8, 'c': None, 'd': True}

Re-Try Function

If a function failed one or many times, you can retry N no. of times just by passing retry_value = ?.

If retry_value = 1

A function will execute ones, mean while any error any occurring function will through exception.

@Retry(retry_value=1)
def x_fun():
    print("Function is executing ones")

If retry_value = 2

A function will execute twice if first execution fails else only ones.

@Retry(retry_value=2)
def x_fun():
    print("raise exception")
    raise Exception("Try twice")

If retry_value = 0

A function is disabled and could not execute the function.

@Retry(retry_value=0)
def x_fun():
    print("Function is disabled")

MIT License : Copyright (c) 2019 Abhimanyu Haralukallu

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for jangli, version 1.2.1
Filename, size File type Python version Upload date Hashes
Filename, size jangli-1.2.1-py3-none-any.whl (5.1 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size jangli-1.2.1.tar.gz (3.7 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page