Skip to main content

Client library for managing machine learning models on the Jaqpot platform

Project description

Build and test Publish to PyPI 📦

Jaqpotpy

The jaqpotpy library enables you to upload and deploy machine learning models to the Jaqpot platform. Once uploaded, you can manage, document, and share your models via the Jaqpot user interface at https://app.jaqpot.org. You can also make predictions online or programmatically using the Jaqpot API.

Getting Started

Prerequisites

Installation

Install jaqpotpy using pip:

pip install jaqpotpy

Model Training and Deployment

Follow these steps to train and deploy your model on Jaqpot:

1. Train your model using pandas DataFrame as input.
2. Deploy the trained model using the deploy_on_jaqpot function.

Example Code

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from jaqpotpy import Jaqpot
from jaqpotpy.datasets import JaqpotpyDataset
from jaqpotpy.models import SklearnModel

# Creating a Simulated Dataset for Model Training
np.random.seed(42)
X1 = np.random.rand(100)
X2 = np.random.rand(100)
ACTIVITY = 2 * X1 + 3 * X2 + np.random.randn(100) * 0.1
df = pd.DataFrame({"X1": X1, "X2": X2, "ACTIVITY": ACTIVITY})
y_cols = ["ACTIVITY"]
x_cols = ["X1", "X2"]

# Step 1: Create a Jaqpotpy dataset
dataset = JaqpotpyDataset(df=df, y_cols=y_cols, x_cols=x_cols, task="regression")

# Step 2: Build a model
rf = RandomForestRegressor(random_state=42)
myModel = SklearnModel(dataset=dataset, model=rf)
myModel.fit()

# Step 3: Upload the model on Jaqpot
jaqpot = Jaqpot() 
jaqpot.login() #log in to Jaqppt
myModel.deploy_on_jaqpot(
    jaqpot=jaqpot,
    name="Demo: Regression",
    description="This is a description",
    visibility="PRIVATE"
)

Once your model is successfully deployed on the Jaqpot platform, the function will provide you with the model ID that you can use to manage your model through the user interface and API.

Console Output:

<DATE> - INFO - Model has been successfully uploaded. The url of the model is https://app.jaqpot.org/dashboard/models/<ModelID>

Managing Your Models

You can further manage your models through the Jaqpot user interface at https://app.jaqpot.org. This platform allows you to view detailed documentation, share models with your contacts, and make predictions.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jaqpotpy-6.11.3.tar.gz (95.8 kB view details)

Uploaded Source

Built Distribution

jaqpotpy-6.11.3-py3-none-any.whl (185.4 kB view details)

Uploaded Python 3

File details

Details for the file jaqpotpy-6.11.3.tar.gz.

File metadata

  • Download URL: jaqpotpy-6.11.3.tar.gz
  • Upload date:
  • Size: 95.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for jaqpotpy-6.11.3.tar.gz
Algorithm Hash digest
SHA256 cb703f743b82b6cd68e2a08b9ac29e02eee4bd550be5996281c66f83dc5ef177
MD5 71d617a1a49546de61aea709a6b69066
BLAKE2b-256 6965844a4fb079c8cf43da30642715a134245430b9d4366296e7143dd55cc3cf

See more details on using hashes here.

File details

Details for the file jaqpotpy-6.11.3-py3-none-any.whl.

File metadata

  • Download URL: jaqpotpy-6.11.3-py3-none-any.whl
  • Upload date:
  • Size: 185.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for jaqpotpy-6.11.3-py3-none-any.whl
Algorithm Hash digest
SHA256 72ed48523e16fdd447aff80ca8682c07f03fc2b13c2a14f467b6079732b00c9e
MD5 88a4454c3d20b298e3e66207e6177769
BLAKE2b-256 eec8e9bc189fcdbbde5372a36820236b45518c7cb53ff4f702cb0ab62a3fc251

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page