Skip to main content

Client library for managing machine learning models on the Jaqpot platform

Project description

Build and test Publish to PyPI 📦

Jaqpotpy

The jaqpotpy library enables you to upload and deploy machine learning models to the Jaqpot platform. Once uploaded, you can manage, document, and share your models via the Jaqpot user interface at https://app.jaqpot.org. You can also make predictions online or programmatically using the Jaqpot API.

Getting Started

Prerequisites

Installation

Install jaqpotpy using pip:

pip install jaqpotpy

Model Training and Deployment

Follow these steps to train and deploy your model on Jaqpot:

1. Train your model using pandas DataFrame as input.
2. Deploy the trained model using the deploy_on_jaqpot function.

Example Code

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from jaqpotpy import Jaqpot
from jaqpotpy.datasets import JaqpotpyDataset
from jaqpotpy.models import SklearnModel

# Creating a Simulated Dataset for Model Training
np.random.seed(42)
X1 = np.random.rand(100)
X2 = np.random.rand(100)
ACTIVITY = 2 * X1 + 3 * X2 + np.random.randn(100) * 0.1
df = pd.DataFrame({"X1": X1, "X2": X2, "ACTIVITY": ACTIVITY})
y_cols = ["ACTIVITY"]
x_cols = ["X1", "X2"]

# Step 1: Create a Jaqpotpy dataset
dataset = JaqpotpyDataset(df=df, y_cols=y_cols, x_cols=x_cols, task="regression")

# Step 2: Build a model
rf = RandomForestRegressor(random_state=42)
myModel = SklearnModel(dataset=dataset, model=rf)
myModel.fit()

# Step 3: Upload the model on Jaqpot
jaqpot = Jaqpot() 
jaqpot.login() #log in to Jaqppt
myModel.deploy_on_jaqpot(
    jaqpot=jaqpot,
    name="Demo: Regression",
    description="This is a description",
    visibility="PRIVATE"
)

Once your model is successfully deployed on the Jaqpot platform, the function will provide you with the model ID that you can use to manage your model through the user interface and API.

Console Output:

<DATE> - INFO - Model has been successfully uploaded. The url of the model is https://app.jaqpot.org/dashboard/models/<ModelID>

Managing Your Models

You can further manage your models through the Jaqpot user interface at https://app.jaqpot.org. This platform allows you to view detailed documentation, share models with your contacts, and make predictions.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jaqpotpy-6.11.4.tar.gz (96.1 kB view details)

Uploaded Source

Built Distribution

jaqpotpy-6.11.4-py3-none-any.whl (186.1 kB view details)

Uploaded Python 3

File details

Details for the file jaqpotpy-6.11.4.tar.gz.

File metadata

  • Download URL: jaqpotpy-6.11.4.tar.gz
  • Upload date:
  • Size: 96.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for jaqpotpy-6.11.4.tar.gz
Algorithm Hash digest
SHA256 cad4ab669124c4647940d3cd482b5ec2ad831abb2fd7b1c854ac75bd0619a948
MD5 84bef86b377b4e9cf1dd854220cc8ff2
BLAKE2b-256 ac73a6cd102ef1ad2d011a35c1b412b55c4899ab409bf4fd97f8710596be44c2

See more details on using hashes here.

File details

Details for the file jaqpotpy-6.11.4-py3-none-any.whl.

File metadata

  • Download URL: jaqpotpy-6.11.4-py3-none-any.whl
  • Upload date:
  • Size: 186.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for jaqpotpy-6.11.4-py3-none-any.whl
Algorithm Hash digest
SHA256 883e867fd1b37697cb68a1dccea1a46873baa2c06a972ddeb8c59d6351cc0720
MD5 6a55c23c6cb780a87eb6bf2582a84b63
BLAKE2b-256 89768365f7fe156bcec1e0568366cef88694e9729947c00c6accd36b08050b8b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page