HPC Plotter and profiler for benchmarking data made for JAX
Project description
Here's the updated README with the additional information about the timer.report and the multi-GPU setup:
JAX HPC Profiler
JAX HPC Profiler is a tool designed for benchmarking and visualizing performance data in high-performance computing (HPC) environments. It provides functionalities to generate, concatenate, and plot CSV data from various runs.
Table of Contents
- Introduction
- Installation
- Generating CSV Files Using the Timer Class
- CSV Structure
- Concatenating Files from Different Runs
- Plotting CSV Data
- Examples
Introduction
JAX HPC Profiler allows users to:
- Generate CSV files containing performance data.
- Concatenate multiple CSV files from different runs.
- Plot the performance data for analysis.
Installation
To install the package, run the following command:
pip install jax-hpc-profiler
Generating CSV Files Using the Timer Class
To generate CSV files, you can use the Timer
class provided in the jax_hpc_profiler.timer
module. This class helps in timing functions and saving the timing results to CSV files.
Example Usage
import jax
from jax_hpc_profiler import Timer
def fcn(m, n, k):
return jax.numpy.dot(m, n) + k
timer = Timer(save_jaxpr=True)
m = jax.numpy.ones((1000, 1000))
n = jax.numpy.ones((1000, 1000))
k = jax.numpy.ones((1000, 1000))
timer.chrono_jit(fcn, m, n, k)
for i in range(10):
timer.chrono_fun(fcn, m, n, k)
meta_data = {
"function": "fcn",
"precision": "float32",
"x": 1000,
"y": 1000,
"z": 1000,
"px": 1,
"py": 1,
"backend": "NCCL",
"nodes": 1
}
extra_info = {
"done": "yes"
}
timer.report("examples/profiling/test.csv", **meta_data, extra_info=extra_info)
timer.report
has sensible defaults and this is the API for the Timer
class:
csv_filename
: The path to the CSV file to save the timing data (required).function
: The name of the function being timed (required).x
: The size of the input data in the x dimension (required).y
: The size of the input data in the y dimension (by default same as x).z
: The size of the input data in the z dimension (by default same as x).precision
: The precision of the data (default: "float32").px
: The number of partitions in the x dimension (default: 1).py
: The number of partitions in the y dimension (default: 1).backend
: The backend used for computation (default: "NCCL").nodes
: The number of nodes used for computation (default: 1).md_filename
: The path to the markdown file containing the compiled code and other information (default: {csv_folder}/{x}{px}{py}{backend}{precision}_{function}.md).extra_info
: Additional information to include in the report (default: {}
px
and py
are used to specify the data decomposition. For example, if you have a 2D array of size 1000x1000 and you partition it into 4 parts (2x2), you would set px=2
and py=2
.
they can also be used in a single device run to specify batch size.
Some decomposition parameters are generated and that are specific to 3D data decomposition.
slab_yz
if the distributed axis is the y-axis.
slab_xy
if the distributed axis is the x-axis.
pencils
if the distributed axis are the x and y axes.
Multi-GPU Setup
In a multi-GPU setup, the times are automatically averaged across ranks, providing a single performance metric for the entire setup.
CSV Structure
The CSV files should follow a specific structure to ensure proper processing and concatenation. The directory structure should be organized by GPU type, with subdirectories for the number of GPUs and the respective CSV files.
Example Directory Structure
root_directory/
├── gpu_1/
│ ├── 2/
│ │ ├── method_1.csv
│ │ ├── method_2.csv
│ │ └── method_3.csv
│ ├── 4/
│ │ ├── method_1.csv
│ │ ├── method_2.csv
│ │ └── method_3.csv
│ └── 8/
│ ├── method_1.csv
│ ├── method_2.csv
│ └── method_3.csv
└── gpu_2/
├── 2/
│ ├── method_1.csv
│ ├── method_2.csv
│ └── method_3.csv
├── 4/
│ ├── method_1.csv
│ ├── method_2.csv
│ └── method_3.csv
└── 8/
├── method_1.csv
├── method_2.csv
└── method_3.csv
Concatenating Files from Different Runs
The plot
function expects the directory to be organized as described above, but with the different number of GPUs together in the same directory. The concatenate
function can be used to concatenate the CSV files from different runs into a single file.
Example Usage
jax-hpc-profiler concat /path/to/root_directory /path/to/output
And the output will be:
out_directory/
├── gpu_1/
│ ├── method_1.csv
│ ├── method_2.csv
│ └── method_3.csv
└── gpu_2/
├── method_1.csv
├── method_2.csv
└── method_3.csv
Plotting CSV Data
You can plot the performance data using the plot
command. The plotting command provides various options to customize the plots.
Usage
jax-hpc-profiler plot -f <csv_files> [options]
Options
-f, --csv_files
: List of CSV files to plot (required).-g, --gpus
: List of number of GPUs to plot.-d, --data_size
: List of data sizes to plot.-fd, --filter_pdims
: List of pdims to filter (e.g., 1x4 2x2 4x8).-ps, --pdim_strategy
: Strategy for plotting pdims. This argument can be multiple ones (plot_all
,plot_fastest
,slab_yz
,slab_xy
,pencils
).plot_all
: Plot every decomposition.plot_fastest
: Plot the fastest decomposition.
-pr, --precision
: Precision to filter by. This argument can be multiple ones (float32
,float64
).-fn, --function_name
: Function names to filter. This argument can be multiple ones.-pt, --plot_times
: Time columns to plot (jit_time
,min_time
,max_time
,mean_time
,std_time
,last_time
). Note: You cannot plot memory and time together.-pm, --plot_memory
: Memory columns to plot (generated_code
,argument_size
,output_size
,temp_size
). Note: You cannot plot memory and time together.-mu, --memory_units
: Memory units to plot (KB
,MB
,GB
,TB
).-fs, --figure_size
: Figure size.-o, --output
: Output file (if none then only show plot).-db, --dark_bg
: Use dark background for plotting.-pd, --print_decompositions
: Print decompositions on plot (experimental).-b, --backends
: List of backends to include. This argument can be multiple ones.-sc, --scaling
: Scaling type (Weak
,Strong
).-l, --label_text
: Custom label for the plot. You can use placeholders:%decomposition%
(or%p%
),%precision%
(or%pr%
),%plot_name%
(or%pn%
),%backend%
(or%b%
),%node%
(or%n%
),%methodname%
(or%m%
).
Examples
The repository includes examples for both profiling and plotting.
Profiling Example
See the examples/profiling
directory for profiling examples, including function.py
, test.csv
, and the generated markdown report.
Plotting Example
See the examples/plotting
directory for plotting examples, including generator.py
, sample_data1.csv
, sample_data2.csv
, and sample_data3.csv
.
a multi GPU example comparing distributed FFT can be found here jaxdecomp-bechmarks
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file jax_hpc_profiler-0.2.8.tar.gz
.
File metadata
- Download URL: jax_hpc_profiler-0.2.8.tar.gz
- Upload date:
- Size: 53.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 02de1a80100e58e20d13f61e06c478cddff664af85b375bf867b141e3e355353 |
|
MD5 | 0a36bd765e7991d24d3e794c7f0dec46 |
|
BLAKE2b-256 | 505b1b4c42fd40bf640d60da99df0fa1493b60c781ca726c4d4b5e3188e345d6 |
File details
Details for the file jax_hpc_profiler-0.2.8-py3-none-any.whl
.
File metadata
- Download URL: jax_hpc_profiler-0.2.8-py3-none-any.whl
- Upload date:
- Size: 40.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6983043495db626cbb66e76cc184d4b03a35aed1fc0eb78d081331b2cc95721b |
|
MD5 | 8d8d6774529e5b7e48f7408e62702367 |
|
BLAKE2b-256 | 1c934806e29ce714513d3c8639be6ad2948e9ceea1f8d50d8418c01652c3450e |