Skip to main content

Matrix Lie groups in Jax

Project description

jaxlie

build mypy lint codecov

[ API reference ]

jaxlie is a Lie theory library for rigid body transformations and optimization in JAX.

Current functionality:

  • SO(2), SE(2), SO(3), and SE(3) Lie groups implemented as high-level dataclasses.
  • exp(), log(), adjoint(), multiply(), inverse(), and identity() implementations for each Lie group.
  • Pytree registration for all dataclasses.
  • Helpers + analytical Jacobians for on-manifold optimization (jaxlie.manifold).

Example usage
import numpy as onp

from jaxlie import SE3

#############################
# (1) Constructing transforms
#############################

# We can compute a w<-b transform by integrating over an se(3) screw, equivalent
# to `SE3.from_matrix(expm(wedge(twist)))`
twist = onp.array([1.0, 0.0, 0.2, 0.0, 0.5, 0.0])
T_w_b = SE3.exp(twist)
p_b = onp.random.randn(3)

# We can print the (quaternion) rotation term; this is a `SO3` object:
print(T_w_b.rotation)

# Or print the translation; this is a simple array with shape (3,):
print(T_w_b.translation)

# Or the underlying parameters; this is a length-7 (translation, quaternion) array:
print(T_w_b.xyz_wxyz)  # SE3-specific field
print(T_w_b.parameters)  # Alias shared by all groups

# There are also other helpers to generate transforms, eg from matrices:
T_w_b = SE3.from_matrix(T_w_b.as_matrix())

# Or from explicit rotation and translation terms:
T_w_b = SE3.from_rotation_and_translation(
    rotation=T_w_b.rotation,
    translation=T_w_b.translation,
)

# Or with the dataclass constructor + the underlying length-7 parameterization:
T_w_b = SE3(xyz_wxyz=T_w_b.xyz_wxyz)


#############################
# (2) Applying transforms
#############################

# Transform points with the `@` operator:
p_w = T_w_b @ p_b
print(p_w)

# or `.apply()`:
p_w = T_w_b.apply(p_b)
print(p_w)

# or the homogeneous matrix form:
p_w = (T_w_b.as_matrix() @ onp.append(p_b, 1.0))[:-1]
print(p_w)


#############################
# (3) Composing transforms
#############################

# Compose transforms with the `@` operator:
T_b_a = SE3.identity()
T_w_a = T_w_b @ T_b_a
print(T_w_a)

# or `.multiply()`:
T_w_a = T_w_b.multiply(T_b_a)
print(T_w_a)


#############################
# (4) Misc
#############################

# Compute inverses:
T_b_w = T_w_b.inverse()
identity = T_w_b @ T_b_w
print(identity)

# Compute adjoints:
adjoint_T_w_b = T_w_b.adjoint()
print(adjoint_T_w_b)

# Recover our twist, equivalent to `vee(logm(T_w_b.as_matrix()))`:
twist = T_w_b.log()
print(twist)

Misc

jaxlie is heavily inspired by the C++ library Sophus.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jaxlie-0.0.0.tar.gz (11.9 kB view details)

Uploaded Source

Built Distribution

jaxlie-0.0.0-py3-none-any.whl (14.2 kB view details)

Uploaded Python 3

File details

Details for the file jaxlie-0.0.0.tar.gz.

File metadata

  • Download URL: jaxlie-0.0.0.tar.gz
  • Upload date:
  • Size: 11.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.5

File hashes

Hashes for jaxlie-0.0.0.tar.gz
Algorithm Hash digest
SHA256 a8fc51c5284c908f259ca3344613e06313929c99da05eaa91743dc6e99bf6773
MD5 cacac936f6e9b37a7a7ed67874ee5882
BLAKE2b-256 64fe2e162e1c001822cb3500165438622435f059c87ff4c1b20c523dca3a3225

See more details on using hashes here.

File details

Details for the file jaxlie-0.0.0-py3-none-any.whl.

File metadata

  • Download URL: jaxlie-0.0.0-py3-none-any.whl
  • Upload date:
  • Size: 14.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.8.5

File hashes

Hashes for jaxlie-0.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 23e004b60592495308b504642384ce3a7015a21163f58bde080a8b820a98f3f9
MD5 5ecddff410fedb0f015cdf707c376020
BLAKE2b-256 5255d66db89077f8730f9865690c9c898fb3ac69d789fe3550ed8459b4d0458d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page