Skip to main content

Matrix Lie groups in Jax

Project description

jaxlie

build mypy lint codecov

[ API reference ] [ PyPI ]

jaxlie is a Lie theory library for rigid body transformations and optimization in JAX.

Current functionality:

  • SO(2), SE(2), SO(3), and SE(3) Lie groups implemented as high-level dataclasses.
  • exp(), log(), adjoint(), multiply(), inverse(), and identity() implementations for each Lie group.
  • Pytree registration for all dataclasses.
  • Helpers + analytical Jacobians for on-manifold optimization (jaxlie.manifold).

Install (Python >=3.6)
pip install jaxlie

Example usage
import numpy as onp

from jaxlie import SE3

#############################
# (1) Constructing transforms
#############################

# We can compute a w<-b transform by integrating over an se(3) screw, equivalent
# to `SE3.from_matrix(expm(wedge(twist)))`
twist = onp.array([1.0, 0.0, 0.2, 0.0, 0.5, 0.0])
T_w_b = SE3.exp(twist)
p_b = onp.random.randn(3)

# We can print the (quaternion) rotation term; this is a `SO3` object:
print(T_w_b.rotation)

# Or print the translation; this is a simple array with shape (3,):
print(T_w_b.translation)

# Or the underlying parameters; this is a length-7 (translation, quaternion) array:
print(T_w_b.xyz_wxyz)  # SE3-specific field
print(T_w_b.parameters)  # Alias shared by all groups

# There are also other helpers to generate transforms, eg from matrices:
T_w_b = SE3.from_matrix(T_w_b.as_matrix())

# Or from explicit rotation and translation terms:
T_w_b = SE3.from_rotation_and_translation(
    rotation=T_w_b.rotation,
    translation=T_w_b.translation,
)

# Or with the dataclass constructor + the underlying length-7 parameterization:
T_w_b = SE3(xyz_wxyz=T_w_b.xyz_wxyz)


#############################
# (2) Applying transforms
#############################

# Transform points with the `@` operator:
p_w = T_w_b @ p_b
print(p_w)

# or `.apply()`:
p_w = T_w_b.apply(p_b)
print(p_w)

# or the homogeneous matrix form:
p_w = (T_w_b.as_matrix() @ onp.append(p_b, 1.0))[:-1]
print(p_w)


#############################
# (3) Composing transforms
#############################

# Compose transforms with the `@` operator:
T_b_a = SE3.identity()
T_w_a = T_w_b @ T_b_a
print(T_w_a)

# or `.multiply()`:
T_w_a = T_w_b.multiply(T_b_a)
print(T_w_a)


#############################
# (4) Misc
#############################

# Compute inverses:
T_b_w = T_w_b.inverse()
identity = T_w_b @ T_b_w
print(identity)

# Compute adjoints:
adjoint_T_w_b = T_w_b.adjoint()
print(adjoint_T_w_b)

# Recover our twist, equivalent to `vee(logm(T_w_b.as_matrix()))`:
twist = T_w_b.log()
print(twist)

Misc

jaxlie is heavily inspired by the C++ library Sophus.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jaxlie-0.0.2.tar.gz (12.0 kB view details)

Uploaded Source

Built Distribution

jaxlie-0.0.2-py3-none-any.whl (14.3 kB view details)

Uploaded Python 3

File details

Details for the file jaxlie-0.0.2.tar.gz.

File metadata

  • Download URL: jaxlie-0.0.2.tar.gz
  • Upload date:
  • Size: 12.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.1

File hashes

Hashes for jaxlie-0.0.2.tar.gz
Algorithm Hash digest
SHA256 98ba50e13bda4adace738d586b6a2a310a18d2cfdc76f1f9ca29fbd6f3ed0bdd
MD5 429d5edb9f2bfe68599c8cdd25ce065c
BLAKE2b-256 22f39685191412fddf75a3204e78c59d7779597f0084489b77ffb38b7951c4d6

See more details on using hashes here.

File details

Details for the file jaxlie-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: jaxlie-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 14.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.1

File hashes

Hashes for jaxlie-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 5d57d76d98e14aa33b863e189048be8907ef33b6cb47d45bc9fd94f5bcd7e96a
MD5 c71a90589d8e6524812e8744174a0fbc
BLAKE2b-256 25fed175bba733bf5e10e67fc4cbd059a538b866faa3b266d9317e598b82b299

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page