Matrix Lie groups in Jax
Project description
jaxlie
[ API reference ] [ PyPI ]
jaxlie
is a Lie theory library for rigid body transformations and optimization
in JAX.
Current functionality:
- High-level interfaces for SO(2), SE(2), SO(3), and SE(3) Lie groups.
exp()
,log()
,adjoint()
,multiply()
,inverse()
, andidentity()
implementations for each group.- Helpers + analytical Jacobians for on-manifold optimization
(
jaxlie.manifold
). - Dataclass-style implementations, with support for (un)flattening as pytree nodes and serialization using flax.
Install (Python >=3.6)
pip install jaxlie
Example usage for SE(3)
import numpy as onp
from jaxlie import SE3
#############################
# (1) Constructing transforms
#############################
# We can compute a w<-b transform by integrating over an se(3) screw, equivalent
# to `SE3.from_matrix(expm(wedge(twist)))`
twist = onp.array([1.0, 0.0, 0.2, 0.0, 0.5, 0.0])
T_w_b = SE3.exp(twist)
# We can print the (quaternion) rotation term; this is a `SO3` object:
print(T_w_b.rotation)
# Or print the translation; this is a simple array with shape (3,):
print(T_w_b.translation)
# Or the underlying parameters; this is a length-7 (translation, quaternion) array:
print(T_w_b.xyz_wxyz) # SE3-specific field
print(T_w_b.parameters) # Alias shared by all groups
# There are also other helpers to generate transforms, eg from matrices:
T_w_b = SE3.from_matrix(T_w_b.as_matrix())
# Or from explicit rotation and translation terms:
T_w_b = SE3.from_rotation_and_translation(
rotation=T_w_b.rotation,
translation=T_w_b.translation,
)
# Or with the dataclass constructor + the underlying length-7 parameterization:
T_w_b = SE3(xyz_wxyz=T_w_b.xyz_wxyz)
#############################
# (2) Applying transforms
#############################
# Transform points with the `@` operator:
p_b = onp.random.randn(3)
p_w = T_w_b @ p_b
print(p_w)
# or `.apply()`:
p_w = T_w_b.apply(p_b)
print(p_w)
# or the homogeneous matrix form:
p_w = (T_w_b.as_matrix() @ onp.append(p_b, 1.0))[:-1]
print(p_w)
#############################
# (3) Composing transforms
#############################
# Compose transforms with the `@` operator:
T_b_a = SE3.identity()
T_w_a = T_w_b @ T_b_a
print(T_w_a)
# or `.multiply()`:
T_w_a = T_w_b.multiply(T_b_a)
print(T_w_a)
#############################
# (4) Misc
#############################
# Compute inverses:
T_b_w = T_w_b.inverse()
identity = T_w_b @ T_b_w
print(identity)
# Compute adjoints:
adjoint_T_w_b = T_w_b.adjoint()
print(adjoint_T_w_b)
# Recover our twist, equivalent to `vee(logm(T_w_b.as_matrix()))`:
twist = T_w_b.log()
print(twist)
Misc
jaxlie
is heavily inspired by the C++ library
Sophus.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
jaxlie-0.0.4.tar.gz
(12.4 kB
view details)
Built Distribution
jaxlie-0.0.4-py3-none-any.whl
(14.7 kB
view details)
File details
Details for the file jaxlie-0.0.4.tar.gz
.
File metadata
- Download URL: jaxlie-0.0.4.tar.gz
- Upload date:
- Size: 12.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.9.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f9f0d28bcc832b56bcb44b5edb4387658d10ce4e0d5cb27cde86341842bfc991 |
|
MD5 | b33425faf0b12e6505c76d9ac840a628 |
|
BLAKE2b-256 | d837eefe9207f4a2555c8b3d8c39078811d222a848ab615aa6c76e7e42a2971c |
File details
Details for the file jaxlie-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: jaxlie-0.0.4-py3-none-any.whl
- Upload date:
- Size: 14.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.9.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 36fdbc1474b1fff7a03d4cb005607ca68b32a98fbbb620fb1ee9473779ca6465 |
|
MD5 | c2d85d6e43165ea523f0f15d2091e73b |
|
BLAKE2b-256 | 7bc52b63d0c366e7181ab33b10ea11a6afe72ed493a063ddca3e203837e5da0a |