Skip to main content

Matrix Lie groups in Jax

Project description

jaxlie

build mypy lint codecov

[ API reference ] [ PyPI ]

jaxlie is a Lie theory library for rigid body transformations and optimization in JAX.

Current functionality:

  • High-level interfaces for SO(2), SE(2), SO(3), and SE(3) Lie groups.
  • exp(), log(), adjoint(), multiply(), inverse(), and identity() implementations for each group.
  • Helpers + analytical Jacobians for on-manifold optimization (jaxlie.manifold).
  • Dataclass-style implementations, with support for (un)flattening as pytree nodes and serialization using flax.

Install (Python >=3.6)
pip install jaxlie

Example usage for SE(3)
import numpy as onp

from jaxlie import SE3

#############################
# (1) Constructing transforms
#############################

# We can compute a w<-b transform by integrating over an se(3) screw, equivalent
# to `SE3.from_matrix(expm(wedge(twist)))`
twist = onp.array([1.0, 0.0, 0.2, 0.0, 0.5, 0.0])
T_w_b = SE3.exp(twist)

# We can print the (quaternion) rotation term; this is a `SO3` object:
print(T_w_b.rotation)

# Or print the translation; this is a simple array with shape (3,):
print(T_w_b.translation)

# Or the underlying parameters; this is a length-7 (translation, quaternion) array:
print(T_w_b.xyz_wxyz)  # SE3-specific field
print(T_w_b.parameters)  # Alias shared by all groups

# There are also other helpers to generate transforms, eg from matrices:
T_w_b = SE3.from_matrix(T_w_b.as_matrix())

# Or from explicit rotation and translation terms:
T_w_b = SE3.from_rotation_and_translation(
    rotation=T_w_b.rotation,
    translation=T_w_b.translation,
)

# Or with the dataclass constructor + the underlying length-7 parameterization:
T_w_b = SE3(xyz_wxyz=T_w_b.xyz_wxyz)


#############################
# (2) Applying transforms
#############################

# Transform points with the `@` operator:
p_b = onp.random.randn(3)
p_w = T_w_b @ p_b
print(p_w)

# or `.apply()`:
p_w = T_w_b.apply(p_b)
print(p_w)

# or the homogeneous matrix form:
p_w = (T_w_b.as_matrix() @ onp.append(p_b, 1.0))[:-1]
print(p_w)


#############################
# (3) Composing transforms
#############################

# Compose transforms with the `@` operator:
T_b_a = SE3.identity()
T_w_a = T_w_b @ T_b_a
print(T_w_a)

# or `.multiply()`:
T_w_a = T_w_b.multiply(T_b_a)
print(T_w_a)


#############################
# (4) Misc
#############################

# Compute inverses:
T_b_w = T_w_b.inverse()
identity = T_w_b @ T_b_w
print(identity)

# Compute adjoints:
adjoint_T_w_b = T_w_b.adjoint()
print(adjoint_T_w_b)

# Recover our twist, equivalent to `vee(logm(T_w_b.as_matrix()))`:
twist = T_w_b.log()
print(twist)

Misc

jaxlie is heavily inspired by the C++ library Sophus.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jaxlie-0.0.4.tar.gz (12.4 kB view details)

Uploaded Source

Built Distribution

jaxlie-0.0.4-py3-none-any.whl (14.7 kB view details)

Uploaded Python 3

File details

Details for the file jaxlie-0.0.4.tar.gz.

File metadata

  • Download URL: jaxlie-0.0.4.tar.gz
  • Upload date:
  • Size: 12.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.9.1

File hashes

Hashes for jaxlie-0.0.4.tar.gz
Algorithm Hash digest
SHA256 f9f0d28bcc832b56bcb44b5edb4387658d10ce4e0d5cb27cde86341842bfc991
MD5 b33425faf0b12e6505c76d9ac840a628
BLAKE2b-256 d837eefe9207f4a2555c8b3d8c39078811d222a848ab615aa6c76e7e42a2971c

See more details on using hashes here.

File details

Details for the file jaxlie-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: jaxlie-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 14.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.9.1

File hashes

Hashes for jaxlie-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 36fdbc1474b1fff7a03d4cb005607ca68b32a98fbbb620fb1ee9473779ca6465
MD5 c2d85d6e43165ea523f0f15d2091e73b
BLAKE2b-256 7bc52b63d0c366e7181ab33b10ea11a6afe72ed493a063ddca3e203837e5da0a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page