Skip to main content

Matrix Lie groups in Jax

Project description

jaxlie

build mypy lint codecov

[ API reference ] [ PyPI ]

jaxlie is a Lie theory library for rigid body transformations and optimization in JAX.

Implements Lie groups as high-level (data)classes:

Group Description Parameterization
jaxlie.SO2 Rotations in 2D. (real, imaginary): unit norm complex number (∈ S2)
jaxlie.SE2 Proper rigid transforms in 2D. (x, y, real, imaginary): translation & unit complex
jaxlie.SO3 Rotations in 3D. (qw, qx, qy, qz): wxyz quaternion (∈ S4)
jaxlie.SE3 Proper rigid transforms in 3D. (x, y, z, qw, qx, qy, qz): translation & wxyz quaternion

Each group supports:

  • exp(), log(), adjoint(), multiply(), inverse(), and identity() operations
  • Helpers + analytical Jacobians for on-manifold optimization (jaxlie.manifold)
  • (Un)flattening as pytree nodes
  • Serialization using flax

Heavily inspired by (and some operations ported from) the C++ library Sophus.


Install (Python >=3.6)
pip install jaxlie

Example usage for SE(3)
import numpy as onp

from jaxlie import SE3

#############################
# (1) Constructing transforms
#############################

# We can compute a w<-b transform by integrating over an se(3) screw, equivalent
# to `SE3.from_matrix(expm(wedge(twist)))`
twist = onp.array([1.0, 0.0, 0.2, 0.0, 0.5, 0.0])
T_w_b = SE3.exp(twist)

# We can print the (quaternion) rotation term; this is a `SO3` object:
print(T_w_b.rotation)

# Or print the translation; this is a simple array with shape (3,):
print(T_w_b.translation)

# Or the underlying parameters; this is a length-7 (translation, quaternion) array:
print(T_w_b.xyz_wxyz)  # SE3-specific field
print(T_w_b.parameters)  # Alias shared by all groups

# There are also other helpers to generate transforms, eg from matrices:
T_w_b = SE3.from_matrix(T_w_b.as_matrix())

# Or from explicit rotation and translation terms:
T_w_b = SE3.from_rotation_and_translation(
    rotation=T_w_b.rotation,
    translation=T_w_b.translation,
)

# Or with the dataclass constructor + the underlying length-7 parameterization:
T_w_b = SE3(xyz_wxyz=T_w_b.xyz_wxyz)


#############################
# (2) Applying transforms
#############################

# Transform points with the `@` operator:
p_b = onp.random.randn(3)
p_w = T_w_b @ p_b
print(p_w)

# or `.apply()`:
p_w = T_w_b.apply(p_b)
print(p_w)

# or the homogeneous matrix form:
p_w = (T_w_b.as_matrix() @ onp.append(p_b, 1.0))[:-1]
print(p_w)


#############################
# (3) Composing transforms
#############################

# Compose transforms with the `@` operator:
T_b_a = SE3.identity()
T_w_a = T_w_b @ T_b_a
print(T_w_a)

# or `.multiply()`:
T_w_a = T_w_b.multiply(T_b_a)
print(T_w_a)


#############################
# (4) Misc
#############################

# Compute inverses:
T_b_w = T_w_b.inverse()
identity = T_w_b @ T_b_w
print(identity)

# Compute adjoints:
adjoint_T_w_b = T_w_b.adjoint()
print(adjoint_T_w_b)

# Recover our twist, equivalent to `vee(logm(T_w_b.as_matrix()))`:
twist = T_w_b.log()
print(twist)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jaxlie-0.1.0.tar.gz (13.2 kB view details)

Uploaded Source

Built Distribution

jaxlie-0.1.0-py3-none-any.whl (15.5 kB view details)

Uploaded Python 3

File details

Details for the file jaxlie-0.1.0.tar.gz.

File metadata

  • Download URL: jaxlie-0.1.0.tar.gz
  • Upload date:
  • Size: 13.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.9.1

File hashes

Hashes for jaxlie-0.1.0.tar.gz
Algorithm Hash digest
SHA256 d9ca67d849632d1b5bae8a856c3f9a62f9eff1786c88f512af5a337057a26bcc
MD5 0f2b0edd985aafeb5082effa3f4f1fda
BLAKE2b-256 d9b6c7484feed6e87c6da16037fb5b7a8ee5725695ea4c85fc533aeacd2b6092

See more details on using hashes here.

File details

Details for the file jaxlie-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: jaxlie-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 15.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.9.1

File hashes

Hashes for jaxlie-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 27d7d3e7be4a5aab47e6dcd22ed59a51b520a2471c6cdee4af89e8f717ff5aa1
MD5 b8c815eab1a6c79d4fd9a15bf670d800
BLAKE2b-256 520351c4d997447057dac9cc5a2a5017f32bfda7356460f416c7618799248600

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page