Skip to main content

Matrix Lie groups in Jax

Project description

jaxlie

build mypy lint codecov

[ API reference ] [ PyPI ]

jaxlie is a Lie theory library for rigid body transformations and optimization in JAX.

Implements Lie groups as high-level (data)classes:

Group Description Parameterization
jaxlie.SO2 Rotations in 2D. (real, imaginary): unit complex (∈ S2)
jaxlie.SE2 Proper rigid transforms in 2D. (real, imaginary, x, y): unit complex & translation
jaxlie.SO3 Rotations in 3D. (qw, qx, qy, qz): wxyz quaternion (∈ S4)
jaxlie.SE3 Proper rigid transforms in 3D. (x, y, z, qw, qx, qy, qz): translation & wxyz quaternion

Each group supports:

  • exp(), log(), adjoint(), multiply(), inverse(), and identity() operations
  • Helpers + analytical Jacobians for on-manifold optimization (jaxlie.manifold)
  • (Un)flattening as pytree nodes
  • Serialization using flax

Heavily inspired by (and some operations ported from) the C++ library Sophus.


Install (Python >=3.6)
pip install jaxlie

Example usage for SE(3)
import numpy as onp

from jaxlie import SE3

#############################
# (1) Constructing transforms
#############################

# We can compute a w<-b transform by integrating over an se(3) screw, equivalent
# to `SE3.from_matrix(expm(wedge(twist)))`
twist = onp.array([1.0, 0.0, 0.2, 0.0, 0.5, 0.0])
T_w_b = SE3.exp(twist)

# We can print the (quaternion) rotation term; this is an `SO3` object:
print(T_w_b.rotation)

# Or print the translation; this is a simple array with shape (3,):
print(T_w_b.translation)

# Or the underlying parameters; this is a length-7 (quaternion, quaternion) array:
print(T_w_b.wxyz_xyz)  # SE3-specific field
print(T_w_b.parameters)  # Alias shared by all groups

# There are also other helpers to generate transforms, eg from matrices:
T_w_b = SE3.from_matrix(T_w_b.as_matrix())

# Or from explicit rotation and translation terms:
T_w_b = SE3.from_rotation_and_translation(
    rotation=T_w_b.rotation,
    translation=T_w_b.translation,
)

# Or with the dataclass constructor + the underlying length-7 parameterization:
T_w_b = SE3(wxyz_xyz=T_w_b.wxyz_xyz)


#############################
# (2) Applying transforms
#############################

# Transform points with the `@` operator:
p_b = onp.random.randn(3)
p_w = T_w_b @ p_b
print(p_w)

# or `.apply()`:
p_w = T_w_b.apply(p_b)
print(p_w)

# or the homogeneous matrix form:
p_w = (T_w_b.as_matrix() @ onp.append(p_b, 1.0))[:-1]
print(p_w)


#############################
# (3) Composing transforms
#############################

# Compose transforms with the `@` operator:
T_b_a = SE3.identity()
T_w_a = T_w_b @ T_b_a
print(T_w_a)

# or `.multiply()`:
T_w_a = T_w_b.multiply(T_b_a)
print(T_w_a)


#############################
# (4) Misc
#############################

# Compute inverses:
T_b_w = T_w_b.inverse()
identity = T_w_b @ T_b_w
print(identity)

# Compute adjoints:
adjoint_T_w_b = T_w_b.adjoint()
print(adjoint_T_w_b)

# Recover our twist, equivalent to `vee(logm(T_w_b.as_matrix()))`:
twist = T_w_b.log()
print(twist)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jaxlie-0.1.2.tar.gz (13.7 kB view details)

Uploaded Source

Built Distribution

jaxlie-0.1.2-py3-none-any.whl (16.0 kB view details)

Uploaded Python 3

File details

Details for the file jaxlie-0.1.2.tar.gz.

File metadata

  • Download URL: jaxlie-0.1.2.tar.gz
  • Upload date:
  • Size: 13.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for jaxlie-0.1.2.tar.gz
Algorithm Hash digest
SHA256 afc97ff3891997c8908e9c94b870cf8d4f05fe07554305296b507c139540490b
MD5 7219b2fe066d8e59e7ada8eaee80f99b
BLAKE2b-256 0ceb747325a63fc4179295b162891c375d1de704195ad71d1dbdcea00caf8084

See more details on using hashes here.

File details

Details for the file jaxlie-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: jaxlie-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 16.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for jaxlie-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 4b7a99052e31f22a386f76137920f2e9b90717dd623f8a40165b17cff99f6b37
MD5 1b6a353c8f10fb3e196f7785ce47ecd5
BLAKE2b-256 02a755e176ddcfe7b1c05545a032902d399e3529554a8272512cec88f89399a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page