Skip to main content

Matrix Lie groups in Jax

Project description

jaxlie

build mypy lint codecov

[ API reference ] [ PyPI ]

jaxlie is a Lie theory library for rigid body transformations and optimization in JAX.

Implements Lie groups as high-level (data)classes:

Group Description Parameterization
jaxlie.SO2 Rotations in 2D. (real, imaginary): unit complex (∈ S2)
jaxlie.SE2 Proper rigid transforms in 2D. (real, imaginary, x, y): unit complex & translation
jaxlie.SO3 Rotations in 3D. (qw, qx, qy, qz): wxyz quaternion (∈ S4)
jaxlie.SE3 Proper rigid transforms in 3D. (qw, qx, qy, qz, x, y, z): wxyz quaternion & translation

Each group supports:

  • exp(), log(), adjoint(), multiply(), inverse(), and identity() operations
  • Helpers + analytical Jacobians for on-manifold optimization (jaxlie.manifold)
  • (Un)flattening as pytree nodes
  • Serialization using flax

Heavily inspired by (and some operations ported from) the C++ library Sophus.


Install (Python >=3.6)
pip install jaxlie

Example usage for SE(3)
import numpy as onp

from jaxlie import SE3

#############################
# (1) Constructing transforms
#############################

# We can compute a w<-b transform by integrating over an se(3) screw, equivalent
# to `SE3.from_matrix(expm(wedge(twist)))`
twist = onp.array([1.0, 0.0, 0.2, 0.0, 0.5, 0.0])
T_w_b = SE3.exp(twist)

# We can print the (quaternion) rotation term; this is an `SO3` object:
print(T_w_b.rotation())

# Or print the translation; this is a simple array with shape (3,):
print(T_w_b.translation())

# Or the underlying parameters; this is a length-7 (quaternion, translation) array:
print(T_w_b.wxyz_xyz)  # SE3-specific field
print(T_w_b.parameters())  # Helper shared by all groups

# There are also other helpers to generate transforms, eg from matrices:
T_w_b = SE3.from_matrix(T_w_b.as_matrix())

# Or from explicit rotation and translation terms:
T_w_b = SE3.from_rotation_and_translation(
    rotation=T_w_b.rotation(),
    translation=T_w_b.translation(),
)

# Or with the dataclass constructor + the underlying length-7 parameterization:
T_w_b = SE3(wxyz_xyz=T_w_b.wxyz_xyz)


#############################
# (2) Applying transforms
#############################

# Transform points with the `@` operator:
p_b = onp.random.randn(3)
p_w = T_w_b @ p_b
print(p_w)

# or `.apply()`:
p_w = T_w_b.apply(p_b)
print(p_w)

# or the homogeneous matrix form:
p_w = (T_w_b.as_matrix() @ onp.append(p_b, 1.0))[:-1]
print(p_w)


#############################
# (3) Composing transforms
#############################

# Compose transforms with the `@` operator:
T_b_a = SE3.identity()
T_w_a = T_w_b @ T_b_a
print(T_w_a)

# or `.multiply()`:
T_w_a = T_w_b.multiply(T_b_a)
print(T_w_a)


#############################
# (4) Misc
#############################

# Compute inverses:
T_b_w = T_w_b.inverse()
identity = T_w_b @ T_b_w
print(identity)

# Compute adjoints:
adjoint_T_w_b = T_w_b.adjoint()
print(adjoint_T_w_b)

# Recover our twist, equivalent to `vee(logm(T_w_b.as_matrix()))`:
twist = T_w_b.log()
print(twist)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jaxlie-1.0.0.tar.gz (14.0 kB view details)

Uploaded Source

Built Distribution

jaxlie-1.0.0-py3-none-any.whl (16.3 kB view details)

Uploaded Python 3

File details

Details for the file jaxlie-1.0.0.tar.gz.

File metadata

  • Download URL: jaxlie-1.0.0.tar.gz
  • Upload date:
  • Size: 14.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for jaxlie-1.0.0.tar.gz
Algorithm Hash digest
SHA256 cb86ea1f29baca6203c5dea0931e1ad0b5ec3e5647c36457154d182cf57ceab2
MD5 e029d3a7ae81720c78acf9c4e898d318
BLAKE2b-256 e35567a3aa68d34d82be6c4d91e3a83ebd83da83019db23134587171e724d0ad

See more details on using hashes here.

File details

Details for the file jaxlie-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: jaxlie-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 16.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for jaxlie-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 66e2382d86662c39531cb7abcd137c7258505034c0858b2d1b9ba45798513736
MD5 0342b6df76c82bedf594fcd4bcdb4c69
BLAKE2b-256 de51a783bbd290a3ace2d79edd9cded43a1b1c77019d67d4d44942219e5cc4f7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page