Matrix Lie groups in Jax
Project description
jaxlie
[ API reference ] [ PyPI ]
jaxlie
is a Lie theory library for rigid body transformations and optimization
in JAX.
Implements Lie groups as high-level (data)classes:
Group | Description | Parameterization |
---|---|---|
jaxlie.SO2 |
Rotations in 2D. | (real, imaginary): unit complex (∈ S2) |
jaxlie.SE2 |
Proper rigid transforms in 2D. | (real, imaginary, x, y): unit complex & translation |
jaxlie.SO3 |
Rotations in 3D. | (qw, qx, qy, qz): wxyz quaternion (∈ S4) |
jaxlie.SE3 |
Proper rigid transforms in 3D. | (qw, qx, qy, qz, x, y, z): wxyz quaternion & translation |
Each group supports:
exp()
,log()
,adjoint()
,multiply()
,inverse()
, andidentity()
operations- Helpers + analytical Jacobians for on-manifold optimization
(
jaxlie.manifold
) - (Un)flattening as pytree nodes
- Serialization using flax
Heavily inspired by (and some operations ported from) the C++ library Sophus.
Install (Python >=3.6)
pip install jaxlie
Example usage for SE(3)
import numpy as onp
from jaxlie import SE3
#############################
# (1) Constructing transforms
#############################
# We can compute a w<-b transform by integrating over an se(3) screw, equivalent
# to `SE3.from_matrix(expm(wedge(twist)))`
twist = onp.array([1.0, 0.0, 0.2, 0.0, 0.5, 0.0])
T_w_b = SE3.exp(twist)
# We can print the (quaternion) rotation term; this is an `SO3` object:
print(T_w_b.rotation())
# Or print the translation; this is a simple array with shape (3,):
print(T_w_b.translation())
# Or the underlying parameters; this is a length-7 (quaternion, translation) array:
print(T_w_b.wxyz_xyz) # SE3-specific field
print(T_w_b.parameters()) # Helper shared by all groups
# There are also other helpers to generate transforms, eg from matrices:
T_w_b = SE3.from_matrix(T_w_b.as_matrix())
# Or from explicit rotation and translation terms:
T_w_b = SE3.from_rotation_and_translation(
rotation=T_w_b.rotation(),
translation=T_w_b.translation(),
)
# Or with the dataclass constructor + the underlying length-7 parameterization:
T_w_b = SE3(wxyz_xyz=T_w_b.wxyz_xyz)
#############################
# (2) Applying transforms
#############################
# Transform points with the `@` operator:
p_b = onp.random.randn(3)
p_w = T_w_b @ p_b
print(p_w)
# or `.apply()`:
p_w = T_w_b.apply(p_b)
print(p_w)
# or the homogeneous matrix form:
p_w = (T_w_b.as_matrix() @ onp.append(p_b, 1.0))[:-1]
print(p_w)
#############################
# (3) Composing transforms
#############################
# Compose transforms with the `@` operator:
T_b_a = SE3.identity()
T_w_a = T_w_b @ T_b_a
print(T_w_a)
# or `.multiply()`:
T_w_a = T_w_b.multiply(T_b_a)
print(T_w_a)
#############################
# (4) Misc
#############################
# Compute inverses:
T_b_w = T_w_b.inverse()
identity = T_w_b @ T_b_w
print(identity)
# Compute adjoints:
adjoint_T_w_b = T_w_b.adjoint()
print(adjoint_T_w_b)
# Recover our twist, equivalent to `vee(logm(T_w_b.as_matrix()))`:
twist = T_w_b.log()
print(twist)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
jaxlie-1.1.0.tar.gz
(14.1 kB
view details)
Built Distribution
jaxlie-1.1.0-py3-none-any.whl
(16.4 kB
view details)
File details
Details for the file jaxlie-1.1.0.tar.gz
.
File metadata
- Download URL: jaxlie-1.1.0.tar.gz
- Upload date:
- Size: 14.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 04b93c40c3f923bbf22585e7f8f6e12adec8dc93e9a4ea2961e8c0a8fa8f050e |
|
MD5 | 762158bd137e4d89974cf8ec9262696e |
|
BLAKE2b-256 | a60580482c065368ec306a1f82ed84f7382b9ff21166febb25c4b7cac748ca10 |
File details
Details for the file jaxlie-1.1.0-py3-none-any.whl
.
File metadata
- Download URL: jaxlie-1.1.0-py3-none-any.whl
- Upload date:
- Size: 16.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 03890f5ec51c5feb3439790af7a07cb259b74a24ba206cf799e9c556207ac8d0 |
|
MD5 | f253441ad1cc48bb6b00e7e1d37eb6d9 |
|
BLAKE2b-256 | 299836855ca0bbe9e2f5f32ab9fd0d5b579d3889c39472b4892745637631f0ce |