Skip to main content

Matrix Lie groups in Jax

Project description

jaxlie

build mypy lint codecov

[ API reference ] [ PyPI ]

jaxlie is a Lie theory library for rigid body transformations and optimization in JAX.

Implements Lie groups as high-level (data)classes:

Group Description Parameterization
jaxlie.SO2 Rotations in 2D. (real, imaginary): unit complex (∈ S2)
jaxlie.SE2 Proper rigid transforms in 2D. (real, imaginary, x, y): unit complex & translation
jaxlie.SO3 Rotations in 3D. (qw, qx, qy, qz): wxyz quaternion (∈ S4)
jaxlie.SE3 Proper rigid transforms in 3D. (qw, qx, qy, qz, x, y, z): wxyz quaternion & translation

Each group supports:

  • exp(), log(), adjoint(), multiply(), inverse(), and identity() operations
  • Helpers + analytical Jacobians for on-manifold optimization (jaxlie.manifold)
  • (Un)flattening as pytree nodes
  • Serialization using flax

Heavily inspired by (and some operations ported from) the C++ library Sophus.


Install (Python >=3.6)
pip install jaxlie

Example usage for SE(3)
import numpy as onp

from jaxlie import SE3

#############################
# (1) Constructing transforms
#############################

# We can compute a w<-b transform by integrating over an se(3) screw, equivalent
# to `SE3.from_matrix(expm(wedge(twist)))`
twist = onp.array([1.0, 0.0, 0.2, 0.0, 0.5, 0.0])
T_w_b = SE3.exp(twist)

# We can print the (quaternion) rotation term; this is an `SO3` object:
print(T_w_b.rotation())

# Or print the translation; this is a simple array with shape (3,):
print(T_w_b.translation())

# Or the underlying parameters; this is a length-7 (quaternion, translation) array:
print(T_w_b.wxyz_xyz)  # SE3-specific field
print(T_w_b.parameters())  # Helper shared by all groups

# There are also other helpers to generate transforms, eg from matrices:
T_w_b = SE3.from_matrix(T_w_b.as_matrix())

# Or from explicit rotation and translation terms:
T_w_b = SE3.from_rotation_and_translation(
    rotation=T_w_b.rotation(),
    translation=T_w_b.translation(),
)

# Or with the dataclass constructor + the underlying length-7 parameterization:
T_w_b = SE3(wxyz_xyz=T_w_b.wxyz_xyz)


#############################
# (2) Applying transforms
#############################

# Transform points with the `@` operator:
p_b = onp.random.randn(3)
p_w = T_w_b @ p_b
print(p_w)

# or `.apply()`:
p_w = T_w_b.apply(p_b)
print(p_w)

# or the homogeneous matrix form:
p_w = (T_w_b.as_matrix() @ onp.append(p_b, 1.0))[:-1]
print(p_w)


#############################
# (3) Composing transforms
#############################

# Compose transforms with the `@` operator:
T_b_a = SE3.identity()
T_w_a = T_w_b @ T_b_a
print(T_w_a)

# or `.multiply()`:
T_w_a = T_w_b.multiply(T_b_a)
print(T_w_a)


#############################
# (4) Misc
#############################

# Compute inverses:
T_b_w = T_w_b.inverse()
identity = T_w_b @ T_b_w
print(identity)

# Compute adjoints:
adjoint_T_w_b = T_w_b.adjoint()
print(adjoint_T_w_b)

# Recover our twist, equivalent to `vee(logm(T_w_b.as_matrix()))`:
twist = T_w_b.log()
print(twist)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

jaxlie-1.1.0.tar.gz (14.1 kB view details)

Uploaded Source

Built Distribution

jaxlie-1.1.0-py3-none-any.whl (16.4 kB view details)

Uploaded Python 3

File details

Details for the file jaxlie-1.1.0.tar.gz.

File metadata

  • Download URL: jaxlie-1.1.0.tar.gz
  • Upload date:
  • Size: 14.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for jaxlie-1.1.0.tar.gz
Algorithm Hash digest
SHA256 04b93c40c3f923bbf22585e7f8f6e12adec8dc93e9a4ea2961e8c0a8fa8f050e
MD5 762158bd137e4d89974cf8ec9262696e
BLAKE2b-256 a60580482c065368ec306a1f82ed84f7382b9ff21166febb25c4b7cac748ca10

See more details on using hashes here.

File details

Details for the file jaxlie-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: jaxlie-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 16.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for jaxlie-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 03890f5ec51c5feb3439790af7a07cb259b74a24ba206cf799e9c556207ac8d0
MD5 f253441ad1cc48bb6b00e7e1d37eb6d9
BLAKE2b-256 299836855ca0bbe9e2f5f32ab9fd0d5b579d3889c39472b4892745637631f0ce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page